ZHAW Zurich University of Applied Sciences

Winterthur

School of
Engineering

zh
aw

Zusammenfassung INF2
Studienwochen 1-14

Written by: Severin Sprenger
(w/ inputs from lienhyan & hofmaal2)
October 13, 2025
Zf. INF2 SW 1-14

ZHAW Zurich University of Applied Sciences, Winterthur

azw schoolof

1 C

1.1 Compiler

Source code (.¢) file

Pre-Processor

Compiler

-

Assembly code

Object file (.0)

o

*_.

.Executablef'rle

#ifdef/#ifndef ... #endif — Conditionals for pre-processor

#include<...> — Lib file from standard folder
#include"..." — Lib file from cwd

1.1.1 Constants

__FILE__ Name of the currently processed file

__DATE__ Date of translation

__TIME__ Time of translation

__LINE__ Line that is being processed

__STDC__ Defined when compiler in C mode
__cplusplus | Defined when compiler in C++ mode

1.1.2 Example macro

#define ALARM(text) \
printf (M ")\
printf("%s", text); \
printf (M ")

1.2 Dynamic memory (<stdlib.h>)

Hight Address ———————————— > Stack

Uninitialized Data
(BSS)

Initialized Data
(DS)

Low Address ———————————— > Text

Code:
Data:
Heap:
Stack:

Program code
Global and static variables
Dynamically allocated memory

Local data (Variables in functions),
Parameters for functions

Severin Sprenger October 13, 2025 Zf. INF2 SW 1-14

(w/ inputs from lienhyan & hofmaal2)

1

ZHAW Zurich University of Applied Sciences, Winterthur

az& schoolof

1.3 Escape sequences

Sequence | ASCII | Description
\n 10 new line
\r 13 carriage return
\t 09 horizontal tab
\v 11 vertical tab
\£f 12 form feed (Curser to start of next page)
\b 08 backspace
\a 07 bell
\? 39 apostrophe
\" 34 quote
\\ 92 backslash

\nnn char value in octal (n = 0..7)
\xhh char value in hex
1.4 Format

Sequence | Output

%d or %i | int
%oc character

%e or %E | double in format [-] d.ddd e+dd
%t double in format [-] ddd.ddd
%ot int as octal
%os string
%p As pointer address
%u unsigned int

%x pr %X | int as hex
%% %

%ni output as int / flush right / n characters wide

%0ni output as int / flush right / n characters wide filled with 0
%.nf output as float / n digits after comma

%+i output as int / forces plus or minus sign

%#x int as hex / forces 0x before number

1.5 Allocate memory

void *malloc (size_t size)

1.6 Allocate memory and zero

void *calloc (size_t num, size_t size)

1.7 Reallocate memory

void *realloc (void *ptr, size_t size)

1.8 Free memory

void free (void *ptr)

1.9 Weird operators

i++ — Value is returned before and then incremented
++i — Value is first incremented and then returned

Severin Sprenger October 13, 2025
(w/ inputs from lienhyan & hofmaal2) 2

Zf. INF2 SW 1-14

zh School of
Engineering

ZHAW Zurich University of Applied Sciences, Winterthur a

2 Java

2.1 What is Java?

Java is a cross-platform object oriented programming language. The language is cross-platform because of the
use of the JVM (Java Virtual Machine). When Java is compiled during development, it is compiled into byte
code that can be executed on the JVM.

2.2 What is a object?

Class Object

~— - —~ Create an instance
s N

- Car Doy >

Lo _t"‘_}_ S {: - a4
Properties Methods - behaviors Property values Methods
color start() color: red start()
price backward() price: 23,000 backward()
km forward() km: 1,200 forward()
model stop() model: Audi stop()

2.3 Basic functions
2.3.1 Main function

public static void main(String[] args) {}

2.3.2 Constructor

The constructor is a "method" on a class that is called when a new instance of that class is created. The
constructor needs to have the same name as the class itself and has no return value. A class can have multiple
constructors with different types of arguments.

public myTestClass () {}

2.3.3 Class structure

public class SomeRandomClass {
Jxx Any object properties =/

public SomeRandomClass() {
/*x This is the default constructor x/
}

/*% Some object methods */

2.3.4 Date class

Date now = new Date();
String nowStr = now.toString();

2.3.5 Final

A variable that is defined final can’t be reassigned.

2.3.6 Static

For executing a static method of a class, no instance is needed and static functions can’t modify data on the
class.

Severin Sprenger October 13, 2025 Zf. INF2 SW 1-14
(w/ inputs from lienhyan & hofmaal2) 3

zh School of
Engineering

ZHAW Zurich University of Applied Sciences, Winterthur a

2.3.7 This

this is a reference to the current object and can be used to assign variables on the object.
this.gugus = gugus;

2.4 Inheritance

A new class can inherit properties and methods from another "template" class. To use a class as a "template"
for another class the following syntax is needed. (Note: All classes in Java inherit from a class named Object)

public class SomeNewClass extends YourTemplateClass {
/*% Add constructors, methods and properties to the new class */
}

= Object

equals()

Sphere

YT

draw()

ColoredSphere = BowlingBall

color

draw()

draw()

Association

> Inheritance
_____ D Realization /
Implementation

—————— > Dependency

2.4.1 Variable visibility

’ Modifier ‘ Same class ‘ Sub class ‘ Other classes ‘

private yes no no
protected | yes yes no
public yes yes yes

2.4.2 Abstract

A method declared in a root class can be marked as abstact, this forces the implementation of that function in
sub classes. If one method is marked as abstact in a class, the whole class needs to me marked with abstact as
well. This has the result that this class can’t be instantiated on its own.

2.4.3 Interface

The keyword class can be replaced with interface. This has the result that the whole class is interpreted as
abstract, so no methods can be implemented in a interface class. Interface classes can be understood as pure
template classes.

Severin Sprenger October 13, 2025 Zf. INF2 SW 1-14
(w/ inputs from lienhyan & hofmaal2) 4

zh School of
Engineering

ZHAW Zurich University of Applied Sciences, Winterthur a

2.4.4 Implements

To implement a interface class the keyword implements needs to be used. The keyword implements can be
paired with the extends keyword. If any attributes are defined in the interface, they are automatically defined
as static final. Interfaces can also extend other classes.

public class gugus (extends hihi) implements miilleimer ...

public interface gugus extends hihi

2.4.5 Nested classes

Classes can have other classes defined in them. These can be either defined as private or protected.

2.4.6 Anonyms classes

A anonyms class is a class without a class name, for example used to implement a action listened or other
callbacks.

SomeSourceObject.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent e) {
/*+% Implement o event handler x/
}

1)

2.4.7 Adapter classes

A adapter class describes a class that implements a interface with mostly empty (default implementations) of a
method. If a method needs to do more than the default the developer can implement these requirements in the
class that extends the adapter class.

2.4.8 Constructors

The class that inherits from a "template" class can have its own constructor, in this constructor the constructor
of the "template" class can be called using super(...). If the constructor of the "template" class doesn’t require
any parameters, the constructor will be called automatically.

2.4.9 Casting

In Java, class casting is the process of treating an object of one type as if it were another type. This is commonly
used when dealing with inheritance, where objects of subclasses can be treated as objects of their superclass
(upcasting) or vice versa (downcasting).

e Upcasting: This is the process of casting a subclass object to a superclass reference. It’s always safe and
doesn’t require an explicit cast.

e Downcasting: This is the process of casting a superclass reference to a subclass object. It requires an
explicit cast and can lead to a ClassCastException if the object is not actually an instance of the subclass.

2.5 Events (Java GUTI’s)

In java events are handele in a event loop. If an events was triggered, its event handler (developer implemented)
is called.

You can add a event listener using the following syntax. The following code snipped registers the current
class as the event handler.

SomeSourceObject .addActionListener (this);

If an event is triaged by a source object, the method actionPerformed is called and the source object is
passed as a argument.

public void actionPerformed (ActionEvent evt) {
/*% Handle events x/
repaint ();

Severin Sprenger October 13, 2025 Zf. INF2 SW 1-14
(w/ inputs from lienhyan & hofmaal2) 5

ZHAW Zurich University of Applied Sciences, Winterthur a

zh School of
Engineering

2.6 Basic GUI code syntax

public class SomeGuiClass extends JFrame implements ActionListener {
public static void main(String[] args) {

}

// Set look and feel from system look and feel
try {
UIManager .setLookAndFeel (UIManager . getSystemLookAndFeelClassName ());
} catch (Exception e) {
return;
}

SomeGuiClass window = new SomeGuiClass ();

// Set window attributes
window . setTitle ("Some_window_title");
window. setSize (WINDOW WIDTH, WINDOW HEIGHT') ;

// Initialize all components and make the window visible
window . initComponents ();
window.setVisible (true);

private void initComponents() {

JPanel panel = (JPanel) this.getContentPane ();

// Set the layout to be used
panel.setLayout (new FlowLayout ());

private void initComponents() {}

public void actionPerformed (ActionEvent e) {}

2.7 Window event

A application can react to window event (focus changes and so on). For that the application class need to
implement the WindowListener interface.
class SomeAppClass extends JFrame implements WindowListener, ActionListener

2.7.1 Avaliable events

public
public
public
public
public
public
public

void windowOpened (WindowEvent event)
void windowClosing (WindowEvent event)
void windowClosed (WindowEvent event)
void windowlconified (WindowEvent event)
void windowDeiconified (WindowEvent event)
void windowActivated (WindowEvent event)
void windowDeactivated (WindowEvent event)

2.8 Layout managers

A layout manager defines how the content added to a window is organized. The following layouts are available:

2.8.1 FlowLayout

FlowLayout () // centered, left to right
FlowLayout (FlowLayout .LEFT) // left to right
FlowLayout (FlowLayout .RIGHT) // right to left
panel.add(SomeComponent);

2.8.2 BorderLayout

BorderLayout () // 5 areas with no borders

BorderLayout (int hg, int vg) // 5 areas with pizel borders
BorderLayout . (NORTH, EAST, WEST, SOUTH, CENTER) // Awailable locations
panel.add(SomeComponent, BorderLayout.XXX);

Severin Sprenger October 13, 2025 Zf. INF2 SW 1-14
(w/ inputs from lienhyan & hofmaal2) 6

zh School of
Engineering

ZHAW Zurich University of Applied Sciences, Winterthur a

2.8.3 GridLayout

GridLayout (int rows, int cols) // Grid
GridLayout (int rows, int cols, int hg, int vg) // Grid with pizel borders
panel.add (SomeComponent); // Filled from top left to bottom right

2.8.4 null

SomeComponent . setBounds (int x, int y, int width, int height);
SomeComponent . setLocation (int x, int y);
SomeComponent.setSize (int width, int height);

panel.add (SomeComponent) ;

2.8.5 Nested panels

JPanel nestedPanel = new JPanel(new FlowLayout())
nestedPanel.add(SomeComponent)
panel.add(nestedPanel);

2.9 Look and feel

Needs to be set in main method before window is opened. This changes the appearance of the gui application.

2.10 Menus

JMenuBar menuBar = new JMenuBar ();
JMenu someMenuOption = new JMenu("gugus");

JMenultem SomeMenultem = new JMenultem("gugus");
someMenuOption . add (SomeMenultem) ;
SomeMenultem . addActionListener (this);

menuBar . add (someMenuOption);

frame .setJMenuBar (menuBar);

2.10.1 Events

To capture menu events the application class needs to implement the ItemListener interface and also needs to
implement the itemStateChanged(ItemEvent e) method.

2.11 Radio buttons

Default action handler used for all events. boolean state = SomeRadioButtonInstance.isSelected(); is used
to check for state of button.

ButtonGroup group = new ButtonGroup (
JRadioButton one = new JRadioButton("one", true); // This is the default
JRadioButton two = new JRadioButton("two");

ButtonGroup group = new ButtonGroup (

group.add (one);

group .add (two);

panel.add(group);

)

2.12 Combo box

Default action handler used for all events. String choice = e.getSelectedItem(); is used to check the selected
item.

JComboBox box = new JComboBox ();
box.addTtem ("one");

box.addItem ("two");
box.addItem("three");

Severin Sprenger October 13, 2025 Zf. INF2 SW 1-14
(w/ inputs from lienhyan & hofmaal2) 7

zh School of
Engineering

ZHAW Zurich University of Applied Sciences, Winterthur a

2.13 Swing Hierarchy

Frame

Panel

Ul Elements Sub Panel [«

Ul Elements

Sub Sub Panel

Frame (JFrame)
Panel (JPanel)
Ul Elements Sub Panel (JPanel)
Ul Elements SubSub Panel (JPanel)
Severin Sprenger October 13, 2025 Zf. INF2 SW 1-14

(w/ inputs from lienhyan & hofmaal2) 8

zh School of
Engineering

ZHAW Zurich University of Applied Sciences, Winterthur a

2.14 Exceptions

The basic idea behind exceptions and their handling is to either try to recover from the exceptions or to end the
program in a controlled way to not loose any data. Not every exception can be recovered from, so the decision to
try to recover or exit needs to be made during development. In the following list some of the possible reactions
to exceptions are listed.

e Do nothing, try again (not always possible)
e Exit the program (Possible data lose)

e Message to user (eg. Tell user to correct some input)

2.14.1 Try-Catch-Finally

Try Block

code generates
exceptions

Catch Block

Exceptions Passed

Finally Block [*

try {
... // Code that can cause a ezxception
} catch (IOException e) {
... // Handling of first type of exzception
} catch (Exception e) {
... // Handling of n’th type of exzception
} finally {
... // Run after all other code blocks are ezecuted

2.14.2 Self defined exceptions

Exception is a class, that can be extended to create custom exception types. Every custom exception class needs
to have a constructor with a String argument, this string needs to be passed to the constructor of the superclass.

public class NoGugusException extends Exception {
public NoGugusException (String message) {
super (message) ;

}

String getMessage () // Gets the exzception message
String toString() // Classname + ezxception message
void printStackStrace() // Prints the stack trace to the caused ezception

2.14.3 Passing of exceptions

Methods that can cause exceptions need to defined that possible behavior. This is done trough the keyword
throws.

public void getJake() throws NoGugusException, IOException {

}

Severin Sprenger October 13, 2025 Zf. INF2 SW 1-14
(w/ inputs from lienhyan & hofmaal2) 9

zh School of
Engineering

ZHAW Zurich University of Applied Sciences, Winterthur a

2.14.4 Trowable class

Errors are major errors that can’t be catched and recover from. Exceptions can be catched and can be recover
from most of the time.

I 1

I Error | |Exception|
unchecked
exceptions RuntimeException
checked A
exceptions
unchecked
exceptions

Checked exceptions need to be handled by the program if not will cause the program to terminate. (eg.
IDException, ClassNotFoundException)

Unchecked exceptions don’t have to be handled, but can still cause the program to terminate if not dealt
with. If they are not handled, they will be passed onto the JVM. (eg. NullPointerException,
NumberFormatException, ArrayIndexOut0fBoundsException)

2.14.5 Things to avoid when dealing with exceptions

e Empty catches (At least print the exception message to stdout)
e Combinatory logic in catches (eg. Catch all exception and use if to differentiate)

e Replacing control logic with exceptions (eg. Indexing of arrays)

2.15 Java shenanigans

e A empty condition trows a compiler error.

Immer Volesig} SEP bestoh
Prisenzkontrolle, Praktium#

bewertet, 5 zwiischepriefige (optional)

Severin Sprenger October 13, 2025 Zf. INF2 SW 1-14
(w/ inputs from lienhyan & hofmaal2) 10

