
ZHAW Zurich University of Applied Sciences
Winterthur

Zusammenfassung INF2

Studienwochen 1-14

Written by: Severin Sprenger

(w/ inputs from lienhyan & hofmaal2)

October 13, 2025

Zf. INF2 SW 1-14



ZHAW Zurich University of Applied Sciences, Winterthur

1 C

1.1 Compiler

#include<...> → Lib �le from standard folder
#include"..." → Lib �le from cwd
#ifdef/#ifndef ... #endif → Conditionals for pre-processor

1.1.1 Constants

__FILE__ Name of the currently processed �le

__DATE__ Date of translation

__TIME__ Time of translation

__LINE__ Line that is being processed

__STDC__ De�ned when compiler in C mode

__cplusplus De�ned when compiler in C++ mode

1.1.2 Example macro

#de f i n e ALARM( text ) \
p r i n t f ( "******* " ) ; \
p r i n t f ( "%s " , t ex t ) ; \
p r i n t f ( "******* " ) ;

1.2 Dynamic memory (<stdlib.h>)

Code: Program code

Data: Global and static variables

Heap: Dynamically allocated memory

Stack: Local data (Variables in functions),
Parameters for functions

Severin Sprenger

(w/ inputs from lienhyan & hofmaal2)

October 13, 2025

1

Zf. INF2 SW 1-14



ZHAW Zurich University of Applied Sciences, Winterthur

1.3 Escape sequences

Sequence ASCII Description

\n 10 new line

\r 13 carriage return

\t 09 horizontal tab

\v 11 vertical tab

\f 12 form feed (Curser to start of next page)

\b 08 backspace

\a 07 bell

\' 39 apostrophe

\" 34 quote

\\ 92 backslash

\nnn char value in octal (n = 0..7)

\xhh char value in hex

1.4 Format
Sequence Output

%d or %i int

%c character

%e or %E double in format [-] d.ddd e±dd
%f double in format [-] ddd.ddd

%ot int as octal

%s string

%p As pointer address

%u unsigned int

%x pr %X int as hex

%% %

%ni output as int / �ush right / n characters wide
%0ni output as int / �ush right / n characters wide �lled with 0
%.nf output as �oat / n digits after comma
%+i output as int / forces plus or minus sign
%#x int as hex / forces 0x before number

1.5 Allocate memory

void *malloc (size_t size)

1.6 Allocate memory and zero

void *calloc (size_t num, size_t size)

1.7 Reallocate memory

void *realloc (void *ptr, size_t size)

1.8 Free memory

void free (void *ptr)

1.9 Weird operators

i++ → Value is returned before and then incremented
++i → Value is �rst incremented and then returned

Severin Sprenger

(w/ inputs from lienhyan & hofmaal2)

October 13, 2025

2

Zf. INF2 SW 1-14



ZHAW Zurich University of Applied Sciences, Winterthur

2 Java

2.1 What is Java?

Java is a cross-platform object oriented programming language. The language is cross-platform because of the
use of the JVM (Java Virtual Machine). When Java is compiled during development, it is compiled into byte
code that can be executed on the JVM.

2.2 What is a object?

2.3 Basic functions

2.3.1 Main function

public static void main(String[] args) {}

2.3.2 Constructor

The constructor is a "method" on a class that is called when a new instance of that class is created. The
constructor needs to have the same name as the class itself and has no return value. A class can have multiple
constructors with di�erent types of arguments.

public myTestClass () {}

2.3.3 Class structure

public class SomeRandomClass {
/** Any ob j e c t p r op e r t i e s */

public SomeRandomClass ( ) {
/** This i s the d e f a u l t cons t ruc tor */

}

/** Some ob j e c t methods */
}

2.3.4 Date class

Date now = new Date();

String nowStr = now.toString();

2.3.5 Final

A variable that is de�ned final can't be reassigned.

2.3.6 Static

For executing a static method of a class, no instance is needed and static functions can't modify data on the
class.

Severin Sprenger

(w/ inputs from lienhyan & hofmaal2)

October 13, 2025

3

Zf. INF2 SW 1-14



ZHAW Zurich University of Applied Sciences, Winterthur

2.3.7 This

this is a reference to the current object and can be used to assign variables on the object.
this.gugus = gugus;

2.4 Inheritance

A new class can inherit properties and methods from another "template" class. To use a class as a "template"
for another class the following syntax is needed. (Note: All classes in Java inherit from a class named Object)

public class SomeNewClass extends YourTemplateClass {
/** Add cons t ruc tors , methods and p rop e r t i e s to the new c l a s s */

}

2.4.1 Variable visibility

Modi�er Same class Sub class Other classes

private yes no no

protected yes yes no

public yes yes yes

2.4.2 Abstract

A method declared in a root class can be marked as abstact, this forces the implementation of that function in
sub classes. If one method is marked as abstact in a class, the whole class needs to me marked with abstact as
well. This has the result that this class can't be instantiated on its own.

2.4.3 Interface

The keyword class can be replaced with interface. This has the result that the whole class is interpreted as
abstract, so no methods can be implemented in a interface class. Interface classes can be understood as pure
template classes.

Severin Sprenger

(w/ inputs from lienhyan & hofmaal2)

October 13, 2025

4

Zf. INF2 SW 1-14



ZHAW Zurich University of Applied Sciences, Winterthur

2.4.4 Implements

To implement a interface class the keyword implements needs to be used. The keyword implements can be
paired with the extends keyword. If any attributes are de�ned in the interface, they are automatically de�ned
as static final. Interfaces can also extend other classes.

public class gugus (extends hihi) implements mülleimer ...

public interface gugus extends hihi

2.4.5 Nested classes

Classes can have other classes de�ned in them. These can be either de�ned as private or protected.

2.4.6 Anonyms classes

A anonyms class is a class without a class name, for example used to implement a action listened or other
callbacks.

SomeSourceObject . addAct ionLis tener (new Act ionL i s t ene r ( ) {
public void act ionPerformed ( ActionEvent e ) {

/** Implement a event handler */
}

} ) ;

2.4.7 Adapter classes

A adapter class describes a class that implements a interface with mostly empty (default implementations) of a
method. If a method needs to do more than the default the developer can implement these requirements in the
class that extends the adapter class.

2.4.8 Constructors

The class that inherits from a "template" class can have its own constructor, in this constructor the constructor
of the "template" class can be called using super(...). If the constructor of the "template" class doesn't require
any parameters, the constructor will be called automatically.

2.4.9 Casting

In Java, class casting is the process of treating an object of one type as if it were another type. This is commonly
used when dealing with inheritance, where objects of subclasses can be treated as objects of their superclass
(upcasting) or vice versa (downcasting).

� Upcasting: This is the process of casting a subclass object to a superclass reference. It's always safe and
doesn't require an explicit cast.

� Downcasting: This is the process of casting a superclass reference to a subclass object. It requires an
explicit cast and can lead to a ClassCastException if the object is not actually an instance of the subclass.

2.5 Events (Java GUI's)

In java events are handele in a event loop. If an events was triggered, its event handler (developer implemented)
is called.

You can add a event listener using the following syntax. The following code snipped registers the current
class as the event handler.

SomeSourceObject . addAct ionLis tener ( this ) ;

If an event is triaged by a source object, the method actionPerformed is called and the source object is
passed as a argument.

public void act ionPerformed ( ActionEvent evt ) {
/** Handle event s */
r epa in t ( ) ;

}

Severin Sprenger

(w/ inputs from lienhyan & hofmaal2)

October 13, 2025

5

Zf. INF2 SW 1-14



ZHAW Zurich University of Applied Sciences, Winterthur

2.6 Basic GUI code syntax

public class SomeGuiClass extends JFrame implements Act ionL i s t ene r {
public stat ic void main ( St r ing [ ] a rgs ) {

// Set l ook and f e e l from system look and f e e l
try {

UIManager . setLookAndFeel (UIManager . getSystemLookAndFeelClassName ( ) ) ;
} catch ( Exception e ) {

return ;
}

SomeGuiClass window = new SomeGuiClass ( ) ;

// Set window a t t r i b u t e s
window . s e tT i t l e ( "Some window t i t l e " ) ;
window . s e t S i z e (WINDOW_WIDTH, WINDOW_HEIGHT) ;

// I n i t i a l i z e a l l components and make the window v i s i b l e
window . initComponents ( ) ;
window . s e tV i s i b l e ( true ) ;

}

private void initComponents ( ) {
JPanel panel = ( JPanel ) this . getContentPane ( ) ;

// Set the l ayou t to be used
panel . setLayout (new FlowLayout ( ) ) ;

}

private void initComponents ( ) {}

public void act ionPerformed ( ActionEvent e ) {}
}

2.7 Window event

A application can react to window event (focus changes and so on). For that the application class need to
implement the WindowListener interface.

class SomeAppClass extends JFrame implements WindowListener, ActionListener

2.7.1 Avaliable events

public void windowOpened (WindowEvent event )
public void windowClosing (WindowEvent event )
public void windowClosed (WindowEvent event )
public void windowIcon i f i ed (WindowEvent event )
public void windowDeiconi f ied (WindowEvent event )
public void windowActivated (WindowEvent event )
public void windowDeactivated (WindowEvent event )

2.8 Layout managers

A layout manager de�nes how the content added to a window is organized. The following layouts are available:

2.8.1 FlowLayout

FlowLayout ( ) // centered , l e f t to r i g h t
FlowLayout ( FlowLayout .LEFT) // l e f t to r i g h t
FlowLayout ( FlowLayout .RIGHT) // r i g h t to l e f t
panel . add (SomeComponent ) ;

2.8.2 BorderLayout

BorderLayout ( ) // 5 areas with no borders
BorderLayout ( int hg , int vg ) // 5 areas with p i x e l borders
BorderLayout . (NORTH, EAST, WEST, SOUTH, CENTER) // Ava i l a b l e l o c a t i on s
panel . add (SomeComponent , BorderLayout .XXX) ;

Severin Sprenger

(w/ inputs from lienhyan & hofmaal2)

October 13, 2025

6

Zf. INF2 SW 1-14



ZHAW Zurich University of Applied Sciences, Winterthur

2.8.3 GridLayout

GridLayout ( int rows , int c o l s ) // Grid
GridLayout ( int rows , int co l s , int hg , int vg ) // Grid with p i x e l borders
panel . add (SomeComponent ) ; // F i l l e d from top l e f t to bottom r i g h t

2.8.4 null

SomeComponent . setBounds ( int x , int y , int width , int he ight ) ;
SomeComponent . s e tLoca t i on ( int x , int y ) ;
SomeComponent . s e t S i z e ( int width , int he ight ) ;
panel . add (SomeComponent ) ;

2.8.5 Nested panels

JPanel nestedPanel = new JPanel (new FlowLayout ( ) )
nestedPanel . add (SomeComponent )
panel . add ( nestedPanel ) ;

2.9 Look and feel

Needs to be set in main method before window is opened. This changes the appearance of the gui application.

2.10 Menus

JMenuBar menuBar = new JMenuBar ( ) ;
JMenu someMenuOption = new JMenu( "gugus" ) ;

JMenuItem SomeMenuItem = new JMenuItem( "gugus" ) ;
someMenuOption . add (SomeMenuItem ) ;
SomeMenuItem . addAct ionLis tener ( this ) ;

menuBar . add ( someMenuOption ) ;

frame . setJMenuBar (menuBar ) ;

2.10.1 Events

To capture menu events the application class needs to implement the ItemListener interface and also needs to
implement the itemStateChanged(ItemEvent e) method.

2.11 Radio buttons

Default action handler used for all events. boolean state = SomeRadioButtonInstance.isSelected(); is used
to check for state of button.

ButtonGroup group = new ButtonGroup ( )
JRadioButton one = new JRadioButton ( "one" , true ) ; // This i s the d e f a u l t
JRadioButton two = new JRadioButton ( "two" ) ;
ButtonGroup group = new ButtonGroup ( ) ;
group . add ( one ) ;
group . add ( two ) ;
panel . add ( group ) ;

2.12 Combo box

Default action handler used for all events. String choice = e.getSelectedItem(); is used to check the selected
item.

JComboBox box = new JComboBox ( ) ;
box . addItem ( "one" ) ;
box . addItem ( "two" ) ;
box . addItem ( " three " ) ;

Severin Sprenger

(w/ inputs from lienhyan & hofmaal2)

October 13, 2025

7

Zf. INF2 SW 1-14



ZHAW Zurich University of Applied Sciences, Winterthur

2.13 Swing Hierarchy

Severin Sprenger

(w/ inputs from lienhyan & hofmaal2)

October 13, 2025

8

Zf. INF2 SW 1-14



ZHAW Zurich University of Applied Sciences, Winterthur

2.14 Exceptions

The basic idea behind exceptions and their handling is to either try to recover from the exceptions or to end the
program in a controlled way to not loose any data. Not every exception can be recovered from, so the decision to
try to recover or exit needs to be made during development. In the following list some of the possible reactions
to exceptions are listed.

� Do nothing, try again (not always possible)

� Exit the program (Possible data lose)

� Message to user (eg. Tell user to correct some input)

2.14.1 Try-Catch-Finally

try {
. . . // Code tha t can cause a excep t ion

} catch ( IOException e ) {
. . . // Handling o f f i r s t type o f excep t ion

} catch ( Exception e ) {
. . . // Handling o f n ' th type o f excep t ion

} f ina l ly {
. . . // Run a f t e r a l l o ther code b l o c k s are executed

}

2.14.2 Self de�ned exceptions

Exception is a class, that can be extended to create custom exception types. Every custom exception class needs
to have a constructor with a String argument, this string needs to be passed to the constructor of the superclass.

public class NoGugusException extends Exception {
public NoGugusException ( St r ing message ) {

super ( message ) ;
}

}

St r ing getMessage ( ) // Gets the excep t ion message
St r ing toS t r i ng ( ) // Classname + excep t ion message
void pr in tS tackSt race ( ) // Prints the s tack t race to the caused excep t ion

2.14.3 Passing of exceptions

Methods that can cause exceptions need to de�ned that possible behavior. This is done trough the keyword
throws.

public void getJake ( ) throws NoGugusException , IOException {
. . .

}

Severin Sprenger

(w/ inputs from lienhyan & hofmaal2)

October 13, 2025

9

Zf. INF2 SW 1-14



ZHAW Zurich University of Applied Sciences, Winterthur

2.14.4 Trowable class

Errors are major errors that can't be catched and recover from. Exceptions can be catched and can be recover
from most of the time.

Checked exceptions need to be handled by the program if not will cause the program to terminate. (eg.
IOException, ClassNotFoundException)

Unchecked exceptions don't have to be handled, but can still cause the program to terminate if not dealt
with. If they are not handled, they will be passed onto the JVM. (eg. NullPointerException,
NumberFormatException, ArrayIndexOutOfBoundsException)

2.14.5 Things to avoid when dealing with exceptions

� Empty catches (At least print the exception message to stdout)

� Combinatory logic in catches (eg. Catch all exception and use if to di�erentiate)

� Replacing control logic with exceptions (eg. Indexing of arrays)

2.15 Java shenanigans

� A empty condition trows a compiler error.

Severin Sprenger

(w/ inputs from lienhyan & hofmaal2)

October 13, 2025

10

Zf. INF2 SW 1-14


