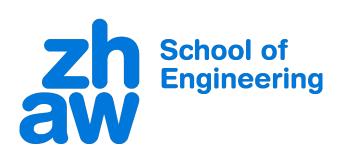
ZHAW Zurich University of Applied Sciences Winterthur



Zusammenfassung LA2 Studienwochen 1-14

Written by: Severin Sprenger & Yannick Lienhard 13. Oktober 2025 Zf. LA2 SW 1-14

Inhaltsverzeichnis

1	Vek 1.1	torräu: Checks																				2 2
		$1.1.1 \\ 1.1.2$	Assoziativität . Existenz des N																			$\frac{2}{2}$
		1.1.2 $1.1.3$	Existenz des Ne Exitenz des Ne																			$\frac{2}{2}$
		1.1.4	Kommutativitä	_																		$\frac{1}{2}$
		1.1.5	Assoziativität .																			2
		1.1.6	Neutralität der																			2
		1.1.7 1.1.8	Distributivgese																			$\frac{2}{2}$
		1.1.0	Distributivgese	UZ ∠					• •		•		• •	• •	 •	• •	•	 •	• •	•	•	
2	Unt 2.1	erräun Tipp .	1e 																			2 2
3	Line	eare U	nabhängigkeit																			3
4	Line	eare H	ille																			3
5	Koo	rdinat	${f envektor}$																			3
6	Erze	eugersy	$_{ m stem}$																			3
7	Basi	is																				3
8	Nor																					4
	8.1		$ische\ Norm\ .\ .$																			4
	8.2	-	n																			4
	8.3 8.4		$alnorm \dots .$ ius-Norm																			$\frac{4}{4}$
	8.5		ummennorm																			4
	8.6		nsummennorm																			4
9	Skal	arproc	lukte																			4
•	9.1		rdskalarprodukt																			4
	9.2	Skalar	produkt auf L_2 .																			4
10	Four	rier-Re	eihen																			5
			Fourier-Reihen																			5
	10.2	Kompl	exe Fourier-Reil	nen																		5
	10.3	Umrec	hnen reell & kor	nplex .																		5
			uden-Phasen-Fo																			5
	10.5	Umrec	hnen reell, komp	olex und	Amp)litu	den-	Pha	sen-	-Fo	rm	•			 ٠		•	 •		•	•	6
11			obildung																			6
			llen der Matrix																			6
	11.2	Verket	tung								•				 ٠	٠.	•	 ٠		•	•	6
12	Dre	hmatri	zen																			6
			ge Matrizen																			7
			on linearen Abb																			7
			on linearen Abbi																			7
			sion von lineare																			7
		Rangsa	atz rabbildungen																			7 7
			der Umkehrabl																			8
			phe Vektorräum																			8
			$echsel \dots \dots$																			8
			Matrix des Bas																			8

12.9.2 Basiswechsels mit linearer Abbildung	8									
13 Eigenwerte und Eigenvektoren	9									
13.1 Eigenraum / Eigenvektoren	9									
13.2 Charakteristisches Polynom	9									
13.2.1 Eigenwerte betimmen										
13.2.2 Algebraische und geometrische Vielfachheit	9									
13.3 Diagonalisieren von Matrizen										
13.3.1 Diagonalisierbarkeit	10									
14 Potenz einer Matrix										
15 Matrix Differenzialgleichungen										
16 Symbole	11									

1 Vektorräume

In einem Vektorraum müssen Addition und Skalarmultiplikation definiert sein. Die Ergebnisse dieser Operation müssen ebenfalls in diesem Vektorraum sein. (Definition siehe LA2->V1->F8)

1.1 Checks

1.1.1 Assoziativität

$$(u+v) + w = u + (v+w), \quad u, v, w \in V$$

1.1.2 Existenz des Nullvektors

$$\exists 0 \in V : V + 0 = V$$

1.1.3 Exitenz des Negativen

$$\forall v \in V \exists -v \in V : v + (-v) = 0$$

1.1.4 Kommutativität

$$v + w = w + v, \quad \forall v, w \in V$$

1.1.5 Assoziativität

$$(\lambda \cdot \mu) \cdot v = \mu \cdot (\lambda \cdot v), \quad \forall \lambda, \mu \in \mathbb{K}, \quad v \in V$$

1.1.6 Neutralität der Eins

$$1 \cdot v = v, \quad \forall v \in V$$

1.1.7 Distributivgesetz 1

$$\lambda(v+w) = \lambda \cdot v + \lambda \cdot w, \quad \forall \lambda \in \mathbb{K}, \quad v, w \in V$$

1.1.8 Distributivgesetz 2

$$(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v, \quad \forall v \in V, \quad \lambda, \mu \in \mathbb{K}$$

2 Unterräume

Ein Unterraum ist eine Teilmenge eines Vektorraums, der in sich die definition eines Vektorraumes erfüllt.

$$U \subset V$$

$$u, v \in U \Rightarrow u + v \in U$$

$$\lambda \in \mathbb{K}, u \in U \Rightarrow \lambda \cdot u \in U$$

2.1 Tipp

Das eine Teilmenge ein Unterraum sein kann muss der Null Vektor teil der Teilmenge sein. Also dies immer zuerst prüfen.

3 Lineare Unabhängigkeit

V ist ein Vektorraum und $v_n \in V, \lambda_n \in \mathbb{R}$ ist gegeben. Die Vektoren v_n sind linear Unabhängig falls folgendes bewiesen werden kann.

$$\lambda_1 \cdot v_1 + \lambda_2 \cdot v_2 + \dots + \lambda_n \cdot v_n = 0 \Rightarrow \lambda_1 = 0, \lambda_2 = 0, \dots \lambda_n = 0$$

- 1. Man setze die einzelnen Vektoren, deren lineare Unabhängigkeit bestimmt werden soll, als Spaltenvektoren zu einer Matrix zusammen.
- 2. Diese Matrix wird gleich den Nullvektor gesetzt und Gegausst.
- 3. Wenn sich keine Nullzeile ergibt (rang = $\max \iff \dim = 0$) sind die Vektoren linear Unabhängig.

$$\begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} = 0$$

4 Lineare Hülle

V ist ein Vektorraum und $v_n \in V$ ist gegeben. Der span ist die Menge aller Linearkombinationen der Vektoren v_1, \ldots, v_n . Diese Menge beschreibt alle Vektoren die mit den gegebenen Vektoren (Basen) erstellt/erreicht werden können.

$$\operatorname{span}(v_1, \dots, v_n) = \{ v \in V | v = \lambda_1 \cdot v_1 + \dots + \lambda_n \cdot v_n \}$$

5 Koordinatenvektor

$$\underbrace{p\left(x\right) = 1 \cdot 1 + -3 \cdot x + 8 \cdot x^2 + -7 \cdot x^3}_{\text{Lineare Kombination der Basisvektoren}} \rightarrow \begin{bmatrix} 1 \\ -3 \\ 8 \\ -7 \end{bmatrix}$$

$$\underbrace{p\left(x\right) = a_0 \cdot 1 + a_1 \cdot x + a_2 \cdot x^2 + a_3 \cdot x^3}_{\text{Lineare Kombination der Basisvektoren}} \rightarrow \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

6 Erzeugersystem

V ist ein Vektorraum. Die Vektoren v_1, \ldots, v_n sind ein Erzeugersystem, falls die Vektoren den gesamten Vektorraum V aufspannen.

$$\mathrm{span}\left(v_1,\ldots,v_n\right)=V$$

7 Basis

V ist ein Vektorraum und $\mathcal{B} \subset V$. \mathcal{B} ist die Basis des Vektorraumes V falls:

- B linear unabhängig ist.
- \mathcal{B} ein Erzeugersystem von V ist. (span $(\mathcal{B}) = V$)

8 Normen

8.1 Euklidische Norm

$$\| x \|_2 = \sqrt{\sum_{i=1}^n x_i^2}, \quad x \in \mathbb{R}^n$$
 $\| z \|_2 = \sqrt{\sum_{i=1}^n |z_i|^2}, \quad x \in \mathbb{C}^n$

8.2 p-Norm

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

8.3 Maximalnorm

$$\|x\|_{\infty} = \max_{1 \le i \le n} |x_i|, \quad x_i \in \mathbb{K}^n$$

8.4 Frobenius-Norm

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

8.5 Zeilensummennorm

$$\parallel A \parallel_{\infty} = \max_{1 \leqslant i \leqslant m} \sum_{i=1}^{n} |a_{ij}|$$

8.6 Spaltensummennorm

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$

- 9 Skalarprodukte
- 9.1 Standardskalarprodukt

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot y_i, \quad x, y \in \mathbb{R}^n$$

$$\langle w, z \rangle = \sum_{i=1}^{n} \overline{w_i} \cdot z_i, \quad x, y \in \mathbb{C}^n$$

9.2 Skalarprodukt auf L_2

$$\langle f, g \rangle_{L^2} = \int_{-1}^1 f(x) \cdot g(x) \, dx$$

10 Fourier-Reihen

f(t) sein eine periodische Funktion mit Periode T. Mithilfe der Fourier transformation kann eine solche Funktion durch die unten stehende Reihe f(t) dargestellt werden.

 ω_0 ist die Basiswinkelgeschwindigkeit und kann durch den GGT aller vorhanden Frequenzen definiert werden.

10.1 Reelle Fourier-Reihen

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cdot \cos(n \cdot \omega_0 \cdot t) + b_n \cdot \sin(n \cdot \omega_0 \cdot t))$$

$$a_0 = \frac{2}{T} \cdot \int_0^T f(t) dt$$

$$a_n = \langle g_n(t), f(t) \rangle_{L^2} = \frac{2}{T} \cdot \int_0^T f(t) \cdot \cos(n \cdot \omega_0 \cdot t) dt, \quad n \in \mathbb{N}$$

$$b_n = \langle h_n(t), f(t) \rangle_{L^2} = \frac{2}{T} \cdot \int_0^T f(t) \cdot \sin(n \cdot \omega_0 \cdot t) dt, \quad n \in \mathbb{N}$$

10.2 Komplexe Fourier-Reihen

$$f(t) = \sum_{k \in \mathbb{Z}} c_k \cdot e^{i \cdot k \cdot \omega_0 \cdot t} = \sum_{k = -\infty}^{\infty} c_k \cdot e^{i \cdot k \cdot \omega_0 \cdot t}$$
$$c_k = \langle e_k(t), f(t) \rangle_{L^2} = \frac{1}{T} \cdot \int_0^T f(t) \cdot e^{-i \cdot k \cdot \omega_0 \cdot t} dt, \quad n \in \mathbb{Z}$$

10.3 Umrechnen reell & komplex

$$\cos(n \cdot \omega_0 \cdot t) = \frac{e^{i \cdot n \cdot \omega_0 \cdot t} + e^{-i \cdot n \cdot \omega_0 \cdot t}}{2}$$

$$\sin(n \cdot \omega_0 \cdot t) = \frac{e^{i \cdot n \cdot \omega_0 \cdot t} - e^{-i \cdot n \cdot \omega_0 \cdot t}}{2 \cdot i}$$

$$a_n = 2 \cdot \text{Re}(c_n)$$

$$b_n = -2 \cdot \text{Im}(c_n)$$

$$c_n = \frac{1}{2} \cdot a_n - \frac{1}{2} \cdot b_n \cdot i$$

$$c_0 = \frac{1}{2} \cdot a_0$$

$$c_{-n} = \overline{c_n} = \frac{1}{2} \cdot a_n + \frac{1}{2} \cdot b_n \cdot i$$

10.4 Amplituden-Phasen-Form

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cdot \cos(n \cdot \omega_0 \cdot t + \varphi_n)$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (A_n \cdot \cos(\varphi_n) \cdot \cos(n \cdot \omega_0 \cdot t) - A_n \cdot \sin(\varphi_n) \cdot \sin(n \cdot \omega_0 \cdot t))$$

10.5 Umrechnen reell, komplex und Amplituden-Phasen-Form

$$a_n = A_n \cdot \cos(\varphi_n)$$

$$b_n = -A_n \cdot \sin(\varphi_n)$$

$$A_n = 2 \cdot |c_n|$$

$$\varphi_n = \arg(c_n)$$

$$c_n = \frac{1}{2} \cdot A_n \cdot \cos(\varphi_n)$$

11 Lineare Abbildung

$$f: V \longrightarrow W,$$

 $v \longmapsto w = f(v)$

Wenn Gleichung 1, 2 und 3 erfüllt sind ist f eine lineare Abbildung.

$$f(v_1 + v_2) = f(v_1) + f(v_2)$$
(1)

$$f(\lambda \cdot v) = \lambda \cdot f(v) \tag{2}$$

$$f\left(0\right) = 0\tag{3}$$

11.1 Aufstellen der Matrix

$$\begin{array}{ccc} V & \stackrel{f \text{ linear}}{\longrightarrow} & W \\ B_V & & B_W \\ \downarrow & & \downarrow \\ \mathbb{R}^n & \stackrel{A \in \mathbb{R}^{m \times n}}{\longrightarrow} & \mathbb{R}^m \end{array}$$

- 1. Man wende die Abbildung f auf alle Basisvektoren B_V an.
- 2. Die resultierenden Vektoren werden als Spaltenvektoren in eine Matrix geschrieben. Diese Matrix ist die Abbildungsmatrix A von f.

11.2 Verkettung

$$C = B \cdot A \in \mathbb{R}^{m \times n}$$

12 Drehmatrizen

Drehmatrizen müssen aus ortsnormieren Spalten aufgebaut sein.

Reine Drehmatrix: det(D) = +1Drehmatrix und Spiegelung: det(D) = -1

12.1 Wichtige Matrizen

$$A_1 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \rightarrow \text{Stecken der Matrix mit Faktor 2}$$

$$A_2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \rightarrow \text{Spiegelung an der X Achse}$$

$$A_3 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \rightarrow \text{Projektion auf die X Achse}$$

$$A_4 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \rightarrow \text{Drehung um } -\left(\frac{\pi}{2}\right) \text{ im Uhrzeigersinn}$$

$$A_5 = \begin{bmatrix} \cos\left(\varphi\right) & -\sin\left(\varphi\right) \\ \sin\left(\varphi\right) & \cos\left(\varphi\right) \end{bmatrix} \rightarrow \text{Drehung um } \varphi \text{ im Gegenuhrzeigersinn}$$

12.2 Kern von linearen Abbildungen

V und W sind Vektorräume mit der Abbildung $f:V\to W$. Der Kern ist eine Menge von Vektoren $(v\in V)$ die nach Anwenden der linearen Abbildung auf den Nullvektor führen $(0\in W)$. ker(f) ist ein Unterraum von V.

$$\ker(f) = \{v \in V | f(f) = 0\}$$
$$\ker(A) = \{x \in \mathbb{R}^n | A \cdot x = 0\}$$
$$\ker(A) \in \mathbb{R}^{n \times r}$$
$$r = \operatorname{rang}(A)$$

12.3 Bild von linearen Abbildungen

V und W sind Vektorräume mit der Abbildung $f:V\to W$. Das Bild ist eine Untermenge von W in der alle Vektoren enthalten sind, die mit den Vektoren aus V und der angewendeten Abbildung erreicht werden können.

$$\operatorname{im}(f) = \left\{ w \in W \middle| w = f(v), \forall v \in V \right\}$$

Die Basis von im (A) besteht aus den Zeilen der Matrix A (können noch linear abhängig sein).

12.4 Dimension von linearen Abbildungen

Die Dimension $\dim(A)$ gibt an wie viele Nullzeilen die gegeausste Matrix A besitzt.

12.5 Rangsatz

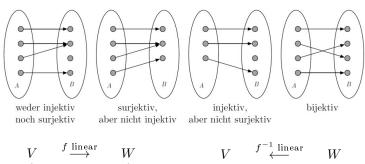
V und W sind Vektorräume mit der Abbildung $f: V \to W$.

$$\dim \left(\ker \left(f \right) \right) + \dim \left(\operatorname{im} \left(f \right) \right) = \dim \left(V \right)$$

12.6 Umkehrabbildungen

V und W sind Vektorräume mit der Abbildung $f:V\to W$. Die Abbildung f hat die Abbildungsmatrix A.

- 1. f injektiv \iff ker $(A) = \{0\}$
- 2. f surjektiv \iff im (A) = W
- 3. f bijektiv \iff f ist injektiv und surjektiv $(\det(A) \neq 0)$



12.7 Matrix der Umkehrabbildung

Matrix invertieren durch Gauss-Jordan.

12.8 Isomorphe Vektorräume

$$f: V \to W$$
 isomorph $\iff f(v \in V) = v \in W$
Schreibweise: $V \cong W$

Jeder reelle, endlich-dimensionale Vektorraum V mit dim (V) = n ist isomorph zu \mathbb{R}^n .

12.9 Basiswechsel

$$\begin{array}{ccc} V & \stackrel{\mathrm{id}}{\longrightarrow} & V \\ \downarrow & & \downarrow \\ B_V & & B_V \\ \downarrow & & \downarrow \\ \mathbb{R}^n & \stackrel{T \in \mathbb{R}^{n \times n}}{\longrightarrow} & \mathbb{R}^n \end{array}$$

$$v \in V$$

 $x \to \text{Koordinatenvektor} \ v \ \text{bez.} \ B_V$

 $\tilde{x} \to \text{Koordinatenvektor } v$ bez. $\tilde{B_V}$

 $\tilde{x} = T \cdot x$

12.9.1 Matrix des Basiswechsels bestimmen

Basisvektoren von B_V durch die Basisvektoren von $\tilde{B_V}$ ausdrücken. Die Koeffizienten stellen dann einen Zeilenvektor von T dar. Natürlich auch umgekehrt möglich um T^{-1} zu bestimmen.

12.9.2 Basiswechsels mit linearer Abbildung

$$\tilde{A} = S \cdot A \cdot T^{-1}$$

Der "Weg" der Transformation kann von links nach rechts abgelesen werden. $\bf Spezialfall:$

$$S = T$$

$$\tilde{A} = T \cdot A \cdot T^{-1} \neq 1 \cdot A$$

$$T \quad \begin{bmatrix} \mathbb{K}^n & \overset{A \in \mathbb{K}^{m \times n}}{\longrightarrow} & \mathbb{K}^m \\ \overset{\uparrow}{B_V} & & \overset{\uparrow}{B_W} \\ & & & \downarrow \\ & V & \overset{f^{-1} \operatorname{linear}}{\longrightarrow} & W \\ & \overset{\downarrow}{B_V} & & \overset{\downarrow}{B_W} \\ \downarrow & & & \downarrow \\ \mathbb{K}^n & \overset{T \in \mathbb{K}^{m \times n}}{\longrightarrow} & \mathbb{K}^m \end{bmatrix} S$$

13 Eigenwerte und Eigenvektoren

V ist ein Vektorraum mit der Abbildung $f:V\to V$ und $v\in V$, wobei $v\neq 0$. Ein Vektor v wird als Eigenvektor von f mit Eigenwert von $\lambda\in\mathbb{K}$ bezeichnet, falls der Vektor v mit angewendeter Abbildung f gleich dem Vektor v mit Streckung λ ist.

$$f(v) = \lambda \cdot v$$

 $A \in \mathbb{K}^{n \times n}$ ist die Abbildungsmatrix zu f und $x \in \mathbb{K}^n$, $x \neq 0$, falls folgende Gleichung erfüllt ist, so ist x ein Eigenvektor und λ der Eigenwert zu diesem Eigenvektor.

$$A \cdot x = \lambda \cdot x$$

13.1 Eigenraum / Eigenvektoren

V ist ein Vektorraum mit der Abbildung $f:V\to V$ und Abbildungsmatrix $A\in\mathbb{K}^{n\times n}$ bez. einer beliebigen Basis. Die Basis E_{v1} von E_{λ} sind die Eigenvektoren der Abbildung f mit Abbildungsmatrix A.

$$E_{\lambda} = \ker (\lambda \cdot \mathbb{1}_n - A) = \{x \in \mathbb{K}^n | A \cdot x = \lambda \cdot x\}$$

13.2 Charakteristisches Polynom

V ist ein Vektorraum mit der Abbildung $f:V\to V$ und Abbildungsmatrix $A\in\mathbb{K}^{n\times n}$ bez. einer beliebigen Basis. Das charakteristische Polynom entsteht durch das Auswerten der Determinante mit λ als Parameter des Polynoms.

$$p_A(A) = \det(\lambda \cdot \mathbb{1}_n - A)$$

13.2.1 Eigenwerte betimmen

$$p_A(\lambda) \stackrel{!}{=} 0$$
$$\det(\lambda \cdot \mathbb{1}_n - A) \stackrel{!}{=} 0$$

13.2.2 Algebraische und geometrische Vielfachheit

- Anzahl des Auftretens eines Eigenwerts (wiederholende Nullstellen), wird als algebraische Vielfachheit bezeichnet.
- Die Anzahl linear unabhängiger Eigenvektoren beschreibt die geometrischen Vielfachheit.

13.3 Diagonalisieren von Matrizen

Die Basis der diagonalisieren Matrix besteht aus lauter Eigenvektoren der Matrix. Somit müssen Eigenvektoren bestimmt werden und mithilfe dieser als Basis ein Basiswechsel der Abbildung durchgeführt werden. **Achtung:** Nicht alle Matrizen sind diagonalisierbar.

$$D = T \cdot A \cdot T^{-1}$$
$$T^{-1} = [E_{v1}, E_{v2} \cdot E_{vn}]$$

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

13.3.1 Diagonalisierbarkeit

- Wenn Matrix $A \in \mathbb{K}^{n \times n}$ n verschiedene Eigenvektoren besitzt ist die Matrix diagonalisierbar.
- Wenn die Matrix $A \in \mathbb{K}^{n \times n}$ mit Eigenwerten λ_i und deren algebraischen Vielfachheit n_i folgendes erfüllt dim $(E_{\lambda_i}) = n_i$ ist die Matrix diagonalisierbar. (Dimensionen der Eigenräume der Eigenwerte stimmt mit der algebraische Vielfachheit überein)

Spezialfälle (immer Diagonalisierbar):

Matrizen mit n verschiedene Eigenwerten mit Vielfachheit von 1 sind immer diagonalisierbar.

$$A = A^{T}$$

$$A = A^{*}$$

$$A \cdot A^{T} = \mathbb{1}_{n}$$

$$A \cdot A^{*} = \mathbb{1}_{n}$$

14 Potenz einer Matrix

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \implies D^n = \begin{bmatrix} \lambda_1^n & 0 & \cdots & 0 \\ 0 & \lambda_2^n & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^n \end{bmatrix}$$

$$A^{n} = \underbrace{A \cdot A \cdot A \dots A}_{n \text{ mal}}$$
$$A^{n} = T^{-1} \cdot D^{n} \cdot T$$

$$e^{D} = \begin{bmatrix} e^{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & e^{\lambda_{2}} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_{n}} \end{bmatrix}$$

$$e^A = T^{-1} \cdot e^D \cdot T$$

15 Matrix Differenzialgleichungen

Betrachten Sie ein System linearer homogener ODEs mit konstanten Koeffizienten:

$$Y'(t) = A \cdot Y(t)$$

Die Lösung ist gegeben durch:

$$Y(t) = e^{At} \cdot Y_0$$

wobei e^A das Matrixexponential ist, definiert als:

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Wenn $A = T^{-1} \cdot D \cdot T$ die Diagonalisierung von A ist, dann gilt:

$$e^A = T^{-1} \cdot e^D \cdot T$$

wobei D eine Diagonalmatrix mit Eigenwerten λ_i auf ihrer Diagonale ist, und e^D ist:

$$e^{D} = \begin{bmatrix} e^{\lambda_{1}} & 0 & \dots & 0 \\ 0 & e^{\lambda_{2}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{\lambda_{k}} \end{bmatrix}$$

16 Symbole

• \iff : If and only if

• \Longrightarrow : Implies

• \forall : For all

• ∃: Exists

