
ZHAW Zurich University of Applied Sciences Winterthur

Zusammenfassung AN1 Studienwochen 1-7

Written by: Severin Sprenger October 13, 2025 Zf. AN1 SW 1-7

1 Funktionen

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto y$$

• Definitionsbereich: $D(f) = \mathbb{R}$

• Zielbereich: $Z(f) = \mathbb{R}$

 \bullet Freie Grösse: x

 \bullet Abhängige Grösse: y

• Bild von x bei f: f(x)

• Bildbereich (Menge aller Bilder): B(f)

1.1 Folgen

$$a: \mathbb{N} \to \mathbb{R}$$
$$n \mapsto a_n$$

2 Ableitung

$$f'(x_0) = \lim_{x_n \to t_0} \frac{f(x_n) - f(x_0)}{x_n - x_0}$$

2.1 Notation

Ableitung von Fkt f nach x: $f'(x) = \dot{f}(x) = \frac{df}{dx}$

2.2 Ableitungstabelle

f(x)	f'(x)
C	0
Cx	C
x^n	nx^{n-1}
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\ln(x)$	$\frac{1}{x}$

f(x)	f'(x)
$\log_n(x)$	$\frac{1}{x \ln(a)}$
e^x	e^x
n^x	$\ln(n)n^x$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\frac{1}{\cos^2(x)}$

2.3 Ableitungsregeln

$$\{f(x) + g(x)\}' = f'(x) + g'(x)$$

$$\{f(x) \cdot g(x)\}' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\left\{\frac{f(x)}{g(x)}\right\}' = \frac{f'(x) \cdot g(x) - f(x) \cdot f'(x)}{g(x)^2}$$

$$\{f(g(x))\}' = f'(g(x)) \cdot g'(x)$$

3 Visualisierung

Graph einer Fkt wird ist eine Punktemenge: $\Gamma(f) = {\dots}$.

Fkt die Stetig sind (Fkt ohne Sprünge) können visualisiert werden.

3.1 KP / KG

Kontrollpunkte (KP) und Kontrollgeraden (KG) verwenden um Fkt zu visualisieren.

• Bsp. KP: Nullstellen / Maximum / Minimum

• Bsp. KG: x-Achse / y-Achse / Grenzwerte

4 Aufleiten / Unbestimmtes Integral

$$\int f(x) dx = F(x) + C; C \in \mathbb{R}$$
$$F'(x) = f(x)$$

4.1 Aufleitungstabelle

f(x)	$\int f(x) dx$
0	C
a	ax + C
$x^n, n \neq -1$	$\frac{1}{n+1}x^{n+1} + C$
$n^x, n > 1$	$\frac{n^2}{\ln(n)} + C$
$\frac{1}{r}$	$\ln(x) + C$

f(x)	$\int f(x) dx$
e^x	$e^x + C$
$\sin(x)$	$-\cos(x) + C$
$\cos(x)$	$\sin(x) + C$
$(ax+b)^n, n \neq -1$	$\frac{1}{a(n+1)}(ax+b)^{n+1} + C$
$\frac{1}{ax+b}$	$\frac{1}{a}\ln(ax+b) + C$

4.2 Aufleitungsregeln

$$\int c \cdot f(x) dx = c \cdot \int f(x) dx$$

$$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$$

$$\int f'(g(x)) \cdot g'(x) dx = f(g(x)) + C$$

5 Bestimmtes Integral

a ist das obere Limit des Integrals und b ist das untere Limit.

$$\int_{a}^{b} f(x) \, dx$$

5.1 Riemannsche Summen

$$\Delta s = \lim_{\Delta t \to 0} \sum_{n=0}^{\frac{t_1 - t_0}{\Delta t}} v(t_0 + n \cdot \Delta t + \frac{\Delta t}{2}) \cdot \Delta t = \int_{t_0}^{t_1} v(t) dt$$

5.2 Trapezmethode

$$\int_{a}^{b} f(x) dx \approx \sum_{a}^{N} f(a + n \cdot \frac{b - a}{N} + \frac{b - a}{2 \cdot N})$$

 $\Delta x = \frac{b-a}{N}$; N ist die Anzahl Intervalle.

$$\int_{a}^{b} f(x) dx \approx \sum_{n=0}^{\frac{b-a}{\Delta x}} f(a + n \cdot \Delta x + \frac{\Delta x}{2})$$

5.3 Hauptsatz

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = [F(x)]_{a}^{b} = F(b) - F(a)$$

5.4 Flächen

Eingeschlossene Fläche \to Vorzeichenunbehaftet (Betrag der Fläche zwischen Fkt Schnittpunkte) Fläche unter der Fkt \to Vorzeichenbehaftet (Normal best. Integral)

6 Mengen

$$\begin{split} \mathbb{N} &= \{1; 2; 3; 4; \ldots\} \\ \mathbb{Z} &= \{0; \pm 1; \pm 2; \pm 3; \pm 4; \ldots\} \\ \mathbb{Z}^- &= \{-1; -2; -3; -4; \ldots\} \\ \mathbb{N}_0 &= \{0; 1; 2; 3; 4; \ldots\} \\ \mathbb{Z}^+ &= \mathbb{N} \\ \mathbb{Q} &= \left\{\frac{m}{n} \middle| m \in \mathbb{Z}, n \in \mathbb{N} \right\} \\ \mathbb{R}^+ &= \{x \in \mathbb{R} \middle| x > 0\} \\ \mathbb{R}^+_0 &= \{x \in \mathbb{R} \middle| x < 0\} \\ \mathbb{R}^- &= \{x \in \mathbb{R} \middle| x < 0\} \\ \mathbb{R}^-_0 &= \{x \in \mathbb{R} \middle| x \le 0\} \end{split}$$

6.1 Symbole

• Ist Element: $a \in A$

• Kein Element $b \notin B$

• Ist Teilmenge: $A \subset B$

• keine Teilmenge: $A \not\subset B$

• Ware Teilmenge (Mengen nicht gleich): $A \subseteq B$

• Leere Menge: $A = \{\}, A = \emptyset$

6.2 Operationen

• $A \cap B$: A und B (Schnittmenge)

• $A \backslash B$: A ohne Elemente in B

• $A \cup B$: A oder B (Vereinigung)

• $A \triangle B$: A xor B

6.3 Produktmengen

Die Produktmenge $A \times B$ zweier Mengen A und B ist die Menge aller Paare (a,b) mit $a \in A$ und $b \in B$. Für $A \times A$ wird auch A^2 geschrieben. (D78)

6.4 Intervalle

• Abgeschlossenes Interval: [a; b]

• Halboffenes Interval: (a; b] =]a; b]

• Offenes Interval: (a; b) =]a; b[

• Unendliches Interval: $[a; \infty) = [a; \infty[$

6.5 Lösungsmengen Bsp.

• $\mathbb{L} = \{2; 8; ...\}$

 $\bullet \ \mathbb{L} = \{\,\}$

• $\mathbb{L} = \{x \in \mathbb{R} | 5 < x < 7\}$

• $\mathbb{L} = [1; 8[$

7 Quadratische Funktion

• Normalform: $f(x) = ax^2 + bx + c$

• Scheitelpunktform: $f(x) = a(x - y_S)^2 + x_S$, $S(x_S, y_S)$

• Lösungsformel: $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

• Nullstellenform: $f(x) = a(x - x_1)(x - x_2)$