ZHAW Zurich University of Applied Sciences Winterthur

Zusammenfassung LA1 Studienwochen 1-14

Written by: Severin Sprenger October 13, 2025 Zf. LA1 SW 1-14

Contents

1		nplexe Zahlen	2									
	1.1	Definition \mathbb{C}										
	1.2	Real- und Imaginärteil										
	1.3	Komplexe Konjugation										
	4.4	1.3.1 Rechenregeln / -gesetze										
	1.4	Betrag (Absolutbetrag)										
	1 -	1.4.1 Rechenregeln / -gesetze										
	1.5	Polar / Kartesisch										
	1.6	Rechenregeln in \mathbb{C}	. 3									
2	Vek	ektoren 4										
_	2.1	Definition Standardvektorraum										
	2.2	Rechenregeln										
	2.3	Standartnorm										
		2.3.1 Rechenregeln										
		2.3.2 Vektor normieren										
	2.4	Standardskalarprodukt (Indizierte Norm)										
		2.4.1 Rechenregeln										
	2.5	Öffnungswinkel										
	2.6	Orthogonalprojektion										
	2.7	Vektorprodukt										
		2.7.1 Rechenregeln										
		2.7.2 Dreiecksfläche										
		2.7.3 Spatprodukt	. 7									
		2.7.4 Tetraeder Volumen	. 7									
3		<i>n</i> -Matrizen	7									
	3.1	Nullmatrix										
	3.2	Einheitsmatrix										
	3.3	Rechenregeln										
	3.4	Matrix Multiplikation										
	3.5	Assoziativität										
	3.6	Hauptdiagonale	. 9									
1	LGS		9									
-	4.1	Gauss-Algorithmus										
	4.2	LGS lösen										
	4.3	Keine Lösung										
	4.4	Unendlich viele Lösungen / Parameter										
	4.5	Lösungsmenge										
	4.6	Eine Lösung										
	4.7	Unendlich viele Lösungen										
	4.8	Kern / homogenes LGS										
	4.9	Dimension										
	4.10	Rang										
5	LU-	Zerlegung	11									
	5.1	Zeilenvertauschungen										
	5.2	Anwendung LGS	. 11									
c	Т	agnoniente Metnix	11									
6		nsponierte Matrix	11									
	6.1	Rechenregeln										
	6.2	Symmetrische Matrizen	. 12									
7	Adi	ungierte Matrix	12									
	7.1	Rechenregeln										
	7.2	Hermitesche Matrizen										

8	8 Spur							
	8.1	Normalengleichung (Normalengleichung)	12					
9	Determinante 1							
	9.1	2×2 -Matrix	13					
		9.1.1 Rechenregeln	13					
	9.2	3×3 -Matrix						
		9.2.1 Rechenregeln						
		9.2.2 Regeln von Sarrus						
	9.3	$n \times n$ -Matrix						
	9.0	9.3.1 Recherregeln						
		9.3.2 Laplacescher Entwicklungssatz	14					
10	Mai	trixinverse	15					
	10.1	Rechenregeln	15					
11	Kor	mplexe Zahlen und Funktionen	15					
	11.1	Exponential form	15					
		Multiplikation/Division						
		Potenzen						
		Wurzeln						
		Logarithmus						
	11.0	Logarithmus	10					
12	Seit	ten im Formelbuch	16					
13	Svn	nbole	16					

1 Komplexe Zahlen

$$i^2 = -1$$

1.1 Definition \mathbb{C}

$$\mathbb{C} := \{ z | z = x + yi, \ x \in \mathbb{R}, \ y \in \mathbb{R}, \ i^2 = -1 \}$$

1.2 Real- und Imaginärteil

$$Re(z) := x$$

$$Im(z) := y$$

1.3 Komplexe Konjugation

Bei der komplexen Konjugation wird der imaginäre Teil der Zahl mit -1 multipliziert (aka. Vorzeichen gewechselt).

$$\overline{z} := x - yi$$

1.3.1 Rechenregeln / -gesetze

$$z \in \mathbb{C}, w \in \mathbb{C}$$

•
$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$

•
$$\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$$

•
$$z = \overline{z} \implies z \in \mathbb{R}$$

•
$$\overline{\overline{z}} = z$$

$$\bullet \ \overline{z+w} = \overline{z} + \overline{w}$$

$$\bullet \ \overline{zw} = \overline{z} \cdot \overline{w}$$

$$\bullet \ \ \overline{\frac{1}{z}} = \frac{1}{\overline{z}}$$

1.4 Betrag (Absolutbetrag)

$$\left|z\right|:=\sqrt{x^2+y^2}=\sqrt{z\overline{z}}$$

1.4.1 Rechenregeln / -gesetze

$$z\in\mathbb{C},\,w\in\mathbb{C}$$

•
$$|z| = 0 \implies z = 0$$

•
$$|wz| = |w||z|$$

$$\bullet |w+z| \leqslant |w| + |z|$$

•
$$|wz|^2 = |w|^2 |z|^2$$

$$\bullet \ \left|z\right|^2 \neq z^2$$

1.5 Polar / Kartesisch

$$z = x + yi$$

$$\arg(z) = \varphi = \arctan\left(\frac{y}{x}\right), \ \varphi \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$$

$$\varphi = \arg(z) = \begin{cases} \arctan\left(\frac{y}{x}\right) - \pi, & x < 0 \land y < 0 \\ -\frac{\pi}{2}, & x = 0 \land y < 0 \\ \arctan\left(\frac{y}{x}\right), & x > 0 \end{cases}$$

$$\frac{\pi}{2}, & x = 0 \land y > 0 \\ \arctan\left(\frac{y}{x}\right) + \pi, & x < 0 \land y \geqslant 0 \\ \operatorname{nicht\ definiert}, & x = y = 0 \end{cases}$$

$$\varphi = \arg(z) = \begin{cases} \operatorname{arccos}\left(\frac{x}{\sqrt{x^2 + y^2}}\right), & y \geqslant 0 \\ -\operatorname{arccos}\left(\frac{x}{\sqrt{x^2 + y^2}}\right), & y < 0 \\ \operatorname{nicht\ definiert}, & x = y = 0 \end{cases}$$

$$r = |z|$$

1.6 Rechenregeln in \mathbb{C}

$$z_1 \in \mathbb{C}, z_2 \in \mathbb{C}, z_3 \in \mathbb{C}$$

 $z = r(\cos(\varphi) + i\sin(\varphi)) = r(cis(\varphi))$

- $z_1 + z_2 := (x_1 + x_2) + (y_1 + y_2)i$
- $z_1 + z_2 = z_2 + z_1$
- $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
- $z_1 + 0 = z_1$
- $z_1 + (-z_1) = 0$
- $z_1z_2 := (x_1 + y_1i)(x_2 + y_2i) = (x_1x_2 y_1y_2) + (x_1y_2 + y_1x_2)i$
- $(z_1z_2)z_3 = z_1(z_2z_3)$
- $1 \cdot z_1 = z_1$
- $z_1 \neq 0 \iff z_1^{-1} = \frac{x_1}{x_1^2 + y_1^2} \frac{y_1}{x_1^2 + y_1^2} i$
- $\bullet \ z_1z_2=z_2z_1$
- $z_1(z_2+z_3)=z_1z_2+z_1z_3$

2 Vektoren

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

2.1 Definition Standardvektorraum

$$\mathbb{K}^n = \mathbb{R}^n \text{ oder } \mathbb{K}^n = \mathbb{C}^n$$

$$\mathbb{K}^n := \left\{ x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \middle| x_k \in \mathbb{K}, \, 1 \leqslant k \leqslant n \right\}$$

2.2 Rechenregeln

 $x\in\mathbb{K}^n,\,y\in\mathbb{K}^n,\,z\in\mathbb{K}^n,\lambda\in\mathbb{K},\mu\in\mathbb{K}$

$$\bullet \ \lambda \cdot x = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{bmatrix}$$

•
$$(x+y) + z = x + (y+z)$$

•
$$x + 0 = x$$

$$\bullet \ x + (-x) = 0$$

$$\bullet \ \ x + y = y + x$$

•
$$(\lambda \mu)x = \lambda(\mu x)$$

•
$$1 \cdot x = 1$$

•
$$\lambda(x+y) = \lambda x + \lambda y$$

•
$$(\lambda + \mu)x = \lambda x + \mu y$$

•
$$x + y = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

$$\bullet \ xy = \begin{bmatrix} x_1 y_1 \\ \vdots \\ x_n y_n \end{bmatrix}$$

2.3 Standartnorm

$$x \in \mathbb{K}^n$$

$$||x|| = \sqrt{\sum_{i=0}^{n} |x_i|^2}$$
$$||x|| \in R_0^+$$

Achtung bei $x \in \mathbb{C}^n$ muss für x_i der Betrag einsetzt werden (subsection 1.4).

2.3.1 Rechenregeln

$$x \in \mathbb{K}^n, y \in \mathbb{K}^n, \lambda \in \mathbb{K}$$

- $\bullet ||x|| = 0 \implies x = 0$
- $||\lambda x|| = |\lambda| \cdot ||x||$
- $||x+y|| \le ||x|| + ||y||$

2.3.2 Vektor normieren

Ein normierter Vektor ist ein Vektor mit der "Länge" 1 ($||e_x|| = 1$).

$$x \in \mathbb{K}^n, ||x|| \neq 0$$

$$e_x = \frac{x}{||x||}$$

2.4 Standardskalarprodukt (Indizierte Norm)

$$x \in \mathbb{K}^n, y \in \mathbb{K}^n$$

$$\langle x, y \rangle := \sum_{i=1}^{n} \overline{x_i} y_i$$

$$||x|| = \sqrt{\langle x, x \rangle}$$

2.4.1 Rechenregeln

$$x \in \mathbb{K}^n, y \in \mathbb{K}^n, z \in \mathbb{K}^n, \lambda \in \mathbb{K}$$

Wenn $\mathbb{K}^n = \mathbb{R}^n$:

- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
- $\langle \lambda x, y \rangle = \langle x, \lambda y \rangle = \lambda \langle x, y \rangle$
- $\langle x, x \rangle \geqslant 0$
- $\langle x, x \rangle = 0 \iff x = 0$

Wenn $\mathbb{K}^n = \mathbb{C}^n$:

- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
- $\bullet \ \langle \lambda x, y \rangle = \overline{\lambda} \langle x, y \rangle$
- $\langle x, \lambda y \rangle = \lambda \langle x, y \rangle$
- $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- $\langle x, x \rangle \geqslant 0$
- $\langle x, x \rangle = 0 \iff x = 0$

2.5 Öffnungswinkel

$$x \in \mathbb{K}^n, x \neq 0, y \in \mathbb{K}^n, y \neq 0$$

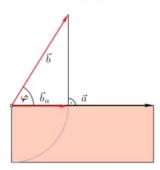
$$\varphi = \angle(x, y) := \arccos\left(\frac{\langle x, y \rangle}{||x|| \cdot ||y||}\right)$$
$$-1 \leqslant \frac{\langle x, y \rangle}{||x|| \cdot ||y||} \leqslant 1$$

2.6 Orthogonalprojektion

Die Orthogonalprojektion ist die Projektion eines Vektors auf einen anderen Vektor.

$$x \in \mathbb{K}^n, x \neq 0, y \in \mathbb{K}^n, y \neq 0$$

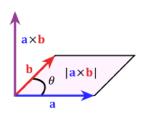
$$y_x = \frac{\langle x, y \rangle}{\left| \left| x \right| \right|^2} x$$

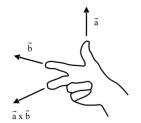


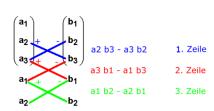
2.7 Vektorprodukt

$$a \in \mathbb{R}^3$$
, $a \neq 0$, $b \in \mathbb{R}^3$, $b \neq 0$, $c \in \mathbb{R}^3$, $c \neq 0$, $\lambda \in \mathbb{R}$

$$w = a \times b = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$







2.7.1 Rechenregeln

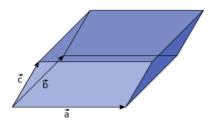
- $w \perp a \wedge w \perp b$
- $||w|| = ||a \times b|| = ||a|| \cdot ||b|| \cdot \sin(\theta)$
- $a \times b = 0 \implies a = \lambda b$
- $\bullet \ \ a \times b = -b \times a$
- $a \times (b+c) = a \times b + a \times c$
- $\lambda(a \times b) = (\lambda a) \times b = a \times (\lambda b)$
- $a \times (b \times c) \neq (a \times b) \times c$

2.7.2 Dreiecksfläche

$$a = \overrightarrow{AB}, b = \overrightarrow{AC}$$

$$A = \frac{1}{2} \big| \big| a \times b \big| \big|$$

2.7.3 Spatprodukt



$$a = \overrightarrow{AB}, b = \overrightarrow{AC}, c = \overrightarrow{AD}$$

$$V = |\langle a \times b, c \rangle| = |\langle c \times a, b \rangle| = |\langle b \times c, a \rangle|$$

2.7.4 Tetraeder Volumen

$$V = \frac{1}{6} \big| \langle a \times b, c \rangle \big|$$

3 $m \times n$ -Matrizen

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

$$\mathbb{K}^{m\times n}:=\left\{A\big|A=(a_{ij}),i\in[1;m],j\in[1;n],a_{ij}\in\mathbb{K}\right\}$$

$$-A = \begin{bmatrix} -a_{11} & \cdots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{m1} & \cdots & -a_{mn} \end{bmatrix}$$

3.1 Nullmatrix

$$0 := \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

3.2 Einheitsmatrix

$$\mathbb{1}_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

3.3 Rechenregeln

$$A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{m \times n}, C \in \mathbb{K}^{m \times n}, \lambda \in \mathbb{K}, \mu \in \mathbb{K}$$

•
$$A + B = \begin{bmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

•
$$\lambda A = \begin{bmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{bmatrix}$$

•
$$(A+B) + C = A + (B+C)$$

•
$$A + 0 = A$$

•
$$A + (-A) = 0$$

$$\bullet \ A + B = B + A$$

•
$$(\lambda \mu) \cdot A = \lambda \cdot (\mu A)$$

•
$$1 \cdot A = A$$

•
$$\lambda \cdot (A+B) = \lambda \cdot A + \lambda \cdot B$$

•
$$(\lambda + \mu) \cdot A = \lambda \cdot A + \mu \cdot A$$

•

3.4 Matrix Multiplikation

$$A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{h \times k}$$

$$A \cdot B \neq B \cdot A$$

Das Matrixprodukt ist nicht für alle Matrizen definiert. Dies kann folgend definiert werden.

- $n = h \iff A \cdot B$ is defined
- $k = m \iff B \cdot A$ is defined

Falls die Multiplikation definiert ist, kann das Produkt wie folgend definiert werden:

$$A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{h \times k}$$

- Falls $A \cdot B$: $C \in \mathbb{K}^{m \times k}$, l = n = h
- Falls $B \cdot A$: $C \in \mathbb{K}^{h \times n}$, l = m = k

3.5 Assoziativität

Das Matrixprodukt ist assoziativ, solange die entsprechenden Matrix Multiplikationen definiert sind.

$$A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{h \times k}, C \in \mathbb{K}^{g \times p}$$

$$C(BA) = (CB)A$$

3.6 Hauptdiagonale

Die Hauptdiagonale einer Matrix verläuft von oben links i = 1; j = 1 nach unten rechts i = m; j = n. Ein Element der Matrix ist Teil der Hauptdiagonale falls i = j. Die Hauptdiagonale ist in der unteren Abbildung in rot eingezeichnet.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

4 LGS

$$a_{11} \cdot x_1 + \dots + a_{1n} \cdot x_n = b_1$$

$$\vdots \qquad \qquad \vdots \qquad = \vdots$$

$$a_{m1} \cdot x_1 + \dots + a_{mn} \cdot x_n = b_n$$

Das obere Gleichungssysteme kann folgend in Matrix-Vektor-Form umgeschrieben werden.

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

4.1 Gauss-Algorithmus

Das Ziel des Gauss-Algorithmus ist es Nullen unterhalb der Hauptdiagonale einer Matrix mit einem Koeffizienten-Vektor b zu erzeugen.

Der Gauss-Algorithmus erlaubt das vertauschen von Zeilen und das Multiplikation / Division / Addition / Subtraktion von Zeilen von einander. P wird hier als Pivotelement verwendet. Das Pivotelement ist ein Element aus einer Zeile der Matrix. Links des Pivotelement ist der Gauss-Algorithmus bereits erfüllt und die Elemente unter dem Pivotelement sind die zu modifizierenden Elemente der Matrix. Eine Zeile das von einem Pivotelement besetzt ist/war, wird nicht mehr verändert. Wenn alle Elemente in der Spalte des Pivotelements unterhalb des Pivotelements gleich Null sind, so wird das Pivotelement der Hauptdiagonale nach unten/rechts bewegt. Dies wird wiederholt, bis das Pivotelement das rechte ende der Matrix erreicht hat. Falls ein Pivotelement gleich 0 ist, muss die Zeile so vertauscht werden, dass das neue Pivotelement nicht gleich Null ist.

$$P = \begin{pmatrix} i_P \\ j_P \end{pmatrix}$$

Beispiel einer Matrix / Vektor Kombination auf die der Gauss-Algorithmus angewendet wurde.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

4.2 LGS lösen

Um das LGS mit dem Matrix/Vektor Kombination zu lösen wird rückwärts eingesetzt. Es ist die Matrix / Vektor Kombination gegeben:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Solve for
$$x_3$$
: $0 \cdot x_1 + 0 \cdot x_2 + a_{33} \cdot x_3 = b_3$
Solve for x_2 : $0 \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 = b_2$
Solve for x_1 : $a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 = b_1$

4.3 Keine Lösung

Falls eine Zeile der Matrix nur aus Nullen besteht und der b-Vektor nicht gleich Null ist gibt es keine Lösung für das LGS.

$$b_3 \neq 0, *=$$
 any number

$$\begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} * \\ * \\ b_3 \end{bmatrix}$$

4.4 Unendlich viele Lösungen / Parameter

Falls eine Variable Teil des x-Vektors in keine Zeile der Matrix A keine Pivotelement ein einer Spalte besitzt, somit muss diese Variable als Parameter ausgedrückt werden. Bsp.:

$$* = any number$$

$$\begin{bmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{bmatrix} \begin{bmatrix} * \\ * \\ * \end{bmatrix}$$

Somit muss die Variable x_4 als Parameter ausgedrückt werden.

$$x_4 = t \in \mathbb{K}$$

4.5 Lösungsmenge

4.6 Eine Lösung

Wenn das LGS eine Lösung besitzt, kann die Lösung als Vektor geschrien werden. Wobei x_{nL} die Lösungen der Variablen des LGS sind.

$$x = \begin{bmatrix} x_{1L} \\ \vdots \\ x_{nL} \end{bmatrix}$$

4.7 Unendlich viele Lösungen

Wenn das LGS unendlich viele Lösungen besitzt, so kann die Lösung wie folgt geschrieben werden.

* = any number, you know what the fuck you are doing

$$x = \begin{bmatrix} * \\ \vdots \\ * \end{bmatrix} + t \cdot \begin{bmatrix} * \\ \vdots \\ * \end{bmatrix} \cdots, t \in \mathbb{K}, \cdots$$

• 1 Parameter \implies Linie im Raum

• 2 Parameter \implies Fläche im Raum

• 3 Parameter \implies Volumen im Raum

4.8 Kern / homogenes LGS

$$Ax = 0$$

 $\ker(A)$ ist die Bezeichnung für die Lösungsmenge eines homogenen LGS.

4.9 Dimension

 $\dim(A)$ ist die Bezeichnung für die Anzahl freien Variablen (Parameter) der Lösung eines homogenen LGS.

4.10 Rang

rang(A) ist die Bezeichnung für die Anzahl der fixen Variablen der Lösung eines homogenen LGS.

5 LU-Zerlegung

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ * & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ * & * & \cdots & 1 \end{bmatrix} \cdot \begin{bmatrix} * & * & \cdots & * \\ 0 & * & & * \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & * \end{bmatrix} = L \cdot U$$

Falls alle Elemente auf der Diagonalen gleich 1 sind, handelt es sich um eine unipotente Dreiecksmatrix. Für LU-Zerlegung normal Gaussen und Schritte mit $\cdot - 1$ in die L-Matrix eintragen.

5.1 Zeilenvertauschungen

Falls Zeilen während der LU-Zerlegung durchgeführt werden müssen, muss zusätzlich eine Permutationsmatrix angefügt werden.

5.2 Anwendung LGS

$$Ax = b$$

$$P \cdot A = L \cdot U$$

Vorwärtseinsetzen: $L \cdot y = P \cdot b \implies y$

Rückwärtseinsetzen: $U \cdot x = y \implies x$

6 Transponierte Matrix

Eine transponierte Matrix ist die Matrix an der Diagonalen gespiegelt.

$$a_{ij}^{\mathsf{T}} = a_{ji}$$

6.1 Rechenregeln

- $(A+B)^{\intercal} = A^{\intercal} + B^{\intercal}$
- $(\lambda \cdot A)^{\intercal} = \lambda \cdot A^{\intercal}$
- \bullet $(A^{\intercal})^{\intercal} = A$
- $(A \cdot B)^{\mathsf{T}} = B^{\mathsf{T}} \cdot A^{\mathsf{T}}$

6.2 Symmetrische Matrizen

- Symmetrisch, falls $A^{\intercal} = A$
- Anti Symmetrisch, falls $A^{\intercal} = -A$

7 Adjungierte Matrix

Eine adjungierte Matrix ist die Matrix in der alle Elemente transponiert worden sind.

$$a_{ij}^* = \overline{a_{ji}}$$

7.1 Rechenregeln

- $(A+B)^* = A^* + B^*$
- $(\lambda \cdot A)^* = \overline{\lambda} \cdot A^*$
- $(A^*)^* = A$
- $\bullet \ (A \cdot B)^* = B^* \cdot A^*$

7.2 Hermitesche Matrizen

- Hermitesch oder selbstadjungiert, falls $A^* = A$
- Anti-hermitesch oder anti-selbstadjungiert, falls $A^* = -A$

8 Spur

Die Spur einer Matrix ist die Summe aller Elemente auf der Diagonalen.

$$\operatorname{tr}(A) := \sum_{i=1}^{n} a_{ii}$$

8.1 Normalengleichung (Normalengleichung)

Es sind N Punkte gegeben.

$$y = a \cdot x^2 + b \cdot x + 1 \cdot c$$

$$x := \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$b := \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

$$A := \begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ \vdots & \vdots & \vdots \\ x_N^2 & x_N & 1 \end{bmatrix}$$

$$A \cdot x = b$$

$$A^{\intercal} \cdot A \cdot \overline{x} = A^{\intercal} \cdot b$$

9 Determinante

9.1 2×2 -Matrix

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \end{bmatrix}$$
$$a_1 = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$
$$a_2 = \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix}$$

$$\det(A) = \det(a_1, a_2) := a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

9.1.1 Rechenregeln

- $\det(\mathbb{1}_2) = 1$
- $\det(a_1, a_2) = -\det(a_2, a_1)$
- $\det(\lambda \cdot a_1, a_2) = \lambda \cdot \det(a_1, a_2) = \det(a_1, \lambda \cdot a_2)$
- $\det(a_1 + b_1, a_2) = \det(a_1, a_2) + \det(b_1, a_2)$
- $\det(a_1, a_2 + b_2) = \det(a_1, a_2) + \det(a_1, b_2)$
- $|\det(a_1,a_2)|$ entspricht der Fläche des von a_1 und a_2 aufgespannte Parallelogramm.

9.2 3×3 -Matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix}$$

$$a_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ a_{22} \end{bmatrix}$$

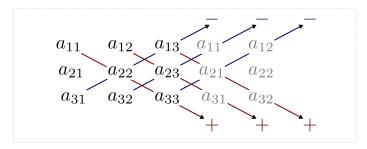
$$a_3 = \begin{bmatrix} a_{13} \\ a_{23} \\ a_{23} \end{bmatrix}$$

$$\det(A) = \det(a_1, a_2, a_3) := (a_1 \times a_2) \cdot a_3$$

9.2.1 Rechenregeln

- $\det(\mathbb{1}_3) = 1$
- $|\det(a_1, a_2, a_3)|$ entspricht der Volumen dem von a_1, a_2 und a_3 aufgespannte Spats.

9.2.2 Regeln von Sarrus



$$\det(A) = a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} - a_{13} \cdot a_{22} \cdot a_{31} - a_{11} \cdot a_{23} \cdot a_{32} - a_{12} \cdot a_{21} \cdot a_{33}$$

9.3 $n \times n$ -Matrix

$$\det(A) = \det(a_1, a_2, \cdots, a_n)$$

9.3.1 Rechenregeln

- $\det(\mathbb{1}_n) = 1$
- $\det(a_1, \cdot, a_i + b, \cdots, a_n) = \det(a_1, \cdots, a_i, \cdots, a_n) + \det(a_1, \cdots, b, \cdots, a_n)$
- $\det(a_1, \dots, \lambda \cdot a_i, \dots, a_n) = \lambda \cdot \det(a_1, \dots, a_i, \dots, a_n)$
- $\det(a_1, \dots, a_i, \dots, a_j, \dots, a_n) = \det(a_1, \dots, a_j, \dots, a_i, \dots, a_n)$
- $det(A \cdot B) = det(A) \cdot det(B)$
- $\det(A^{\mathsf{T}}) = \det(A)$
- \bullet det(U) = Produkt der Diagonalelemente, wobei U eine obere Dreiecksmatrix ist
- \bullet det(L) = Produkt der Diagonalelemente, wobei U eine untere Dreiecksmatrix ist
- $\det(A^{-1}) = \frac{1}{\det(A)} = \det(A)^{-1}$

9.3.2 Laplacescher Entwicklungssatz

Entwicklung nach der j-ten Spalte:
$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{ij})$$

Entwicklung nach der i-ten Spalte:
$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{ij} \cdot \det(A_{ij})$$

 A_{ij} ist eine Untermatrix mit $(n-1)\times (n-1)$ Dimensionen. Die Zeile i und Spalte j streichen sich dabei.

10 Matrixinverse

A invertierbar
$$\iff \det(A) \neq 0 \iff \operatorname{rang}(A) = n$$

- A: regulär, falls rang(A) = n, sonst singulär
- A: invertierbar, falls B existiert so dass $A\cdot B=\mathbbm{1}_n=B\cdot A,\,A^{-1}:=B$

Beim Algorithmus wird "von beiden Seiten der Gauss angewendet". Es werden die gleichen Schritte auf die rechte Matrix angewendet wie die Linke.

a ₁₁	a ₁₂	• • •	a _{1n}	1	0		0
a 21	a 22	• • •	a _{2n}	0	1		:
:	:		:	:		٠.	0
a_{n1}	a_{n2}	• • •	a _{nn}	0	• • •	0	1
1	*	• • •	*	*	*	• • •	*
0	1		÷	*	*	• • •	*
:		٠	*	:	:		:
0		0	1	*	*		*

10.1 Rechenregeln

- $A \cdot B = B \cdot A$
- $A \cdot A^{-1} = A^{-1} \cdot A = \mathbb{1}_n$
- A^{-1} ist eindeutig
- $(A^{-1})^{-1} = A$
- $(\lambda \cdot A)^{-1} = \frac{1}{\lambda} \cdot A^{-1}$
- $(A^{-1})^{\mathsf{T}} = (A^{\mathsf{T}})^{-1}$
- $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$

11 Komplexe Zahlen und Funktionen

$$e^{i \cdot \pi} + 1 = 0$$

$$e^{i \cdot \varphi} = \cos(\varphi) + i \cdot \sin(\varphi)$$

$$e^{z} = e^{x + i \cdot y} = e^{x} \cdot e^{i \cdot y} = e^{x} \cdot (\cos(y) + i \cdot \sin(y))$$

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

11.1 Exponential form

$$z = x + y \cdot i = r \cdot (\cos(\varphi) + i \cdot \sin(\varphi)) = r \cdot e^{i \cdot \varphi + k \cdot 2 \cdot \pi \cdot i}, k \in \mathbb{Z}$$

11.2 Multiplikation/Division

$$z_1 \cdot z_2 = r_1 \cdot e^{i \cdot \varphi_1 + k \cdot 2 \cdot \pi \cdot i} \cdot r_2 \cdot e^{i \cdot \varphi_2 + k \cdot 2 \cdot \pi \cdot i}$$

11.3 Potenzen

$$z^n = (r \cdot e^{i \cdot \varphi + k \cdot 2 \cdot \pi \cdot i})^n$$

11.4 Wurzeln

$$\sqrt[n]{z} = (r \cdot e^{i \cdot \varphi + k \cdot 2 \cdot \pi \cdot i})^{\frac{1}{n}} = \sqrt[n]{r} \cdot e^{i \cdot \frac{\varphi}{n} + k \cdot \frac{2 \cdot \pi}{n} \cdot i}$$

11.5 Logarithmus

$$\ln_{\mathbb{C}}(z) := \ln_{\mathbb{R}}(|z|) + i \cdot arg(z)$$

12 Seiten im Formelbuch

• Vektoren: S27, S104, S105, S106

 \bullet Matrizen: S24, S28, S34

• Komplexe Zahlen: S18, S19

13 Symbole

 $\bullet \quad \Longleftrightarrow \colon \text{If and only if}$

 $\bullet \implies : Implies$

