ZHAW Zurich University of Applied Sciences Winterthur

Zusammenfassung LA1 Studienwochen 1-7

Written by: Severin Sprenger October 13, 2025 Zf. LA1 SW 1-7

1 Komplexe Zahlen

$$i^2 = -1$$

1.1 Definition \mathbb{C}

$$\mathbb{C}:=\left\{z\big|z=x+yi,\,x\in\mathbb{R},\,y\in\mathbb{R},\,i^2=-1\right\}$$

1.2 Real- und Imaginärteil

$$Re(z) := x$$

$$Im(z) := y$$

1.3 Komplexe Konjugation

Bei der komplexen Konjugation wird der imaginäre Teil der Zahl mit -1 multipliziert (aka. Vorzeichen gewechselt).

$$\overline{z} := x - yi$$

1.3.1 Rechenregeln / -gesetze

$$z \in \mathbb{C}, w \in \mathbb{C}$$

•
$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$$

•
$$\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$$

•
$$z = \overline{z} \implies z \in \mathbb{R}$$

•
$$\overline{\overline{z}} = z$$

$$\bullet \ \overline{z+w} = \overline{z} + \overline{w}$$

$$\bullet \ \overline{zw} = \overline{z} \cdot \overline{w}$$

$$\bullet \ \ \overline{\frac{1}{z}} = \frac{1}{\overline{z}}$$

1.4 Betrag (Absolutbetrag)

$$\left|z\right|:=\sqrt{x^2+y^2}=\sqrt{z\overline{z}}$$

1.4.1 Rechenregeln / -gesetze

$$z \in \mathbb{C}, w \in \mathbb{C}$$

•
$$|z| = 0 \implies z = 0$$

•
$$|wz| = |w||z|$$

$$\bullet |w+z| \leqslant |w| + |z|$$

•
$$|wz|^2 = |w|^2 |z|^2$$

$$\bullet \ \left|z\right|^2 \neq z^2$$

1.5 Polar / Kartesisch

$$z=x+yi$$

$$\arg(z)=\varphi=\arctan\left(\frac{y}{x}\right),\,\varphi\in\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$$

$$r=\left|z\right|$$

$$z = r(\cos(\varphi) + i\sin(\varphi)) = r(cis(\varphi))$$

1.6 Rechenregeln in \mathbb{C}

$$z_1 \in \mathbb{C}, z_2 \in \mathbb{C}, z_3 \in \mathbb{C}$$

- $z_1 + z_2 := (x_1 + x_2) + (y_1 + y_2)i$
- $z_1 + z_2 = z_2 + z_1$
- $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$
- $z_1 + 0 = z_1$
- $z_1 + (-z_1) = 0$
- $z_1z_2 := (x_1 + y_1i)(x_2 + y_2i) = (x_1x_2 y_1y_2) + (x_1y_2 + y_1x_2)i$
- $(z_1z_2)z_3 = z_1(z_2z_3)$
- $\bullet \ 1 \cdot z_1 = z_1$
- $z_1 \neq 0 \iff z_1^{-1} = \frac{x_1}{x_1^2 + y_1^2} \frac{y_1}{x_1^2 + y_1^2}$
- $z_1 z_2 = z_2 z_1$
- $z_1(z_2+z_3)=z_1z_2+z_1z_3$

2 Vektoren

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

2.1 Definition Standardvektorraum

$$\mathbb{K}^n = \mathbb{R}^n \text{ oder } \mathbb{K}^n = \mathbb{C}^n$$

$$\mathbb{K}^n := \left\{ x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \middle| x_k \in \mathbb{K}, \, 1 \leqslant k \leqslant n \right\}$$

2.2 Rechenregeln

 $x \in \mathbb{K}^n, y \in \mathbb{K}^n, z \in \mathbb{K}^n, \lambda \in \mathbb{K}, \mu \in \mathbb{K}$

•
$$\lambda \cdot x = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{bmatrix}$$

•
$$(x+y) + z = x + (y+z)$$

•
$$x + 0 = x$$

•
$$x + (-x) = 0$$

$$\bullet \ \ x + y = y + x$$

•
$$(\lambda \mu)x = \lambda(\mu x)$$

•
$$1 \cdot x = 1$$

•
$$\lambda(x+y) = \lambda x + \lambda y$$

•
$$(\lambda + \mu)x = \lambda x + \mu y$$

•
$$x + y = \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

$$\bullet \ xy = \begin{bmatrix} x_1 y_1 \\ \vdots \\ x_n y_n \end{bmatrix}$$

2.3 Standartnorm

$$x \in \mathbb{K}^n$$

$$||x|| = \sqrt{\sum_{i=0}^{n} |x_i|^2}$$
$$||x|| \in R_0^+$$

Achtung bei $x \in \mathbb{C}^n$ muss für x_i der Betrag einsetzt werden (subsection 1.4).

2.3.1 Rechenregeln

$$x \in \mathbb{K}^n, y \in \mathbb{K}^n, \lambda \in \mathbb{K}$$

- $||x|| = 0 \implies x = 0$
- $||\lambda x|| = |\lambda| \cdot ||x||$
- $||x+y|| \le ||x|| + ||y||$

2.3.2 Vektor normieren

Ein normierter Vektor ist ein Vektor mit der "Länge" 1 ($||e_x|| = 1$).

$$x \in \mathbb{K}^n$$
, $||x|| \neq 0$

$$e_x = \frac{x}{||x||}$$

2.4 Standardskalarprodukt

$$x \in \mathbb{K}^n, y \in \mathbb{K}^n$$

$$\langle x, y \rangle := \sum_{i=1}^{n} \overline{x_i} y_i$$

$$||x|| = \sqrt{\langle x, x \rangle}$$

2.4.1 Rechenregeln

$$x \in \mathbb{K}^n, y \in \mathbb{K}^n, z \in \mathbb{K}^n, \lambda \in \mathbb{K}$$

Wenn $\mathbb{K}^n = \mathbb{R}^n$:

•
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

•
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

•
$$\langle \lambda x, y \rangle = \langle x, \lambda y \rangle = \lambda \langle x, y \rangle$$

•
$$\langle x, x \rangle \geqslant 0$$

•
$$\langle x, x \rangle = 0 \iff x = 0$$

Wenn $\mathbb{K}^n = \mathbb{C}^n$:

•
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

•
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

•
$$\langle \lambda x, y \rangle = \overline{\lambda} \langle x, y \rangle$$

$$\bullet \ \langle x, \lambda y \rangle = \lambda \langle x, y \rangle$$

$$\bullet \ \langle x,y\rangle = \overline{\langle y,x\rangle}$$

•
$$\langle x, x \rangle \geqslant 0$$

•
$$\langle x, x \rangle = 0 \iff x = 0$$

2.5 Öffnungswinkel

$$x \in \mathbb{K}^n, x \neq 0, y \in \mathbb{K}^n, y \neq 0$$

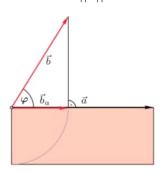
$$\varphi = \angle(x, y) := \arccos\left(\frac{\langle x, y \rangle}{||x|| \cdot ||y||}\right)$$
$$-1 \leqslant \frac{\langle x, y \rangle}{||x|| \cdot ||y||} \leqslant 1$$

2.6 Orthogonalprojektion

Die Orthogonalprojektion ist die Projektion eines Vektors auf einen anderen Vektor.

$$x \in \mathbb{K}^n, x \neq 0, y \in \mathbb{K}^n, y \neq 0$$

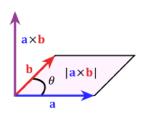
$$y_x = \frac{\langle x, y \rangle}{\left| \left| x \right| \right|^2} x$$

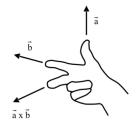


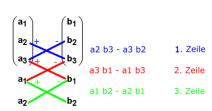
2.7 Vektorprodukt

$$a \in \mathbb{R}^3$$
, $a \neq 0$, $b \in \mathbb{R}^3$, $b \neq 0$, $c \in \mathbb{R}^3$, $c \neq 0$, $\lambda \in \mathbb{R}$

$$w = a \times b = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$







2.7.1 Rechenregeln

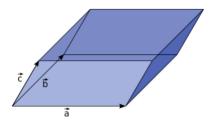
- $w \perp a \wedge w \perp b$
- $||w|| = ||a \times b|| = ||a|| \cdot ||b|| \cdot \sin(\theta)$
- $a \times b = 0 \implies a = \lambda b$
- $\bullet \ \ a \times b = -b \times a$
- $a \times (b+c) = a \times b + a \times c$
- $\lambda(a \times b) = (\lambda a) \times b = a \times (\lambda b)$
- $a \times (b \times c) \neq (a \times b) \times c$

2.7.2 Dreiecksfläche

$$a = \overrightarrow{AB}, b = \overrightarrow{AC}$$

$$A = \frac{1}{2} \big| \big| a \times b \big| \big|$$

2.7.3 Spatprodukt



$$a = \overrightarrow{AB}, b = \overrightarrow{AC}, c = \overrightarrow{AD}$$

$$V = |\langle a \times b, c \rangle| = |\langle c \times a, b \rangle| = |\langle b \times c, a \rangle|$$

2.7.4 Tetraeder Volumen

$$V = \frac{1}{6} \big| \langle a \times b, c \rangle \big|$$

3 $m \times n$ -Matrizen

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

$$\mathbb{K}^{m\times n}:=\left\{A\big|A=(a_{ij}),i\in[1;m],j\in[1;n],a_{ij}\in\mathbb{K}\right\}$$

$$-A = \begin{bmatrix} -a_{11} & \cdots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{m1} & \cdots & -a_{mn} \end{bmatrix}$$

3.1 Nullmatrix

$$0 := \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

3.2 Einheitsmatrix

$$\mathbb{1}_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

3.3 Rechenregeln

$$A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{m \times n}, C \in \mathbb{K}^{m \times n}, \lambda \in \mathbb{K}, \mu \in \mathbb{K}$$

•
$$A + B = \begin{bmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

• $\lambda A = \begin{bmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{bmatrix}$

$$\bullet \ \lambda A = \begin{bmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{bmatrix}$$

•
$$(A+B) + C = A + (B+C)$$

•
$$A + 0 = A$$

•
$$A + (-A) = 0$$

$$\bullet \ A + B = B + A$$

•
$$(\lambda \mu) \cdot A = \lambda \cdot (\mu A)$$

•
$$1 \cdot A = A$$

•
$$\lambda \cdot (A+B) = \lambda \cdot A + \lambda \cdot B$$

•
$$(\lambda + \mu) \cdot A = \lambda \cdot A + \mu \cdot A$$

Matrix Multiplikation 3.4

$$A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{h \times k}$$

$$A \cdot B \neq B \cdot A$$

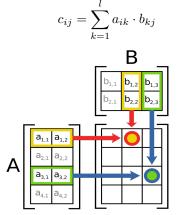
Das Matrixprodukt ist nicht für alle Matrizen definiert. Dies kann folgend definiert werden.

- $n = h \iff A \cdot B$ is defined
- $k = m \iff B \cdot A$ is defined

Falls die Multiplikation definiert ist, kann das Produkt wie folgend definiert werden:

$$A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{h \times k}$$

- Falls $A \cdot B$: $C \in \mathbb{K}^{m \times k}$, l = n = h
- Falls $B \cdot A$: $C \in \mathbb{K}^{h \times n}$, l = m = k



3.5 Assoziativität

Das Matrixprodukt ist assoziativ, solange die entsprechenden Matrix Multiplikationen definiert sind.

$$A \in \mathbb{K}^{m \times n}, \, B \in \mathbb{K}^{h \times k}, \, C \in \mathbb{K}^{g \times p}$$

$$C(BA) = (CB)A$$

3.6 Hauptdiagonale

Die Hauptdiagonale einer Matrix verläuft von oben links i = 1; j = 1 nach unten rechts i = m; j = n. Ein Element der Matrix ist Teil der Hauptdiagonale falls i = j. Die Hauptdiagonale ist in der unteren Abbildung in rot eingezeichnet.

$$\begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \mathbf{a}_{14} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} & \mathbf{a}_{24} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} & \mathbf{a}_{34} \\ \mathbf{a}_{41} & \mathbf{a}_{42} & \mathbf{a}_{43} & \mathbf{a}_{44} \end{bmatrix}$$

4 LGS

$$a_{11} \cdot x_1 + \dots + a_{1n} \cdot x_n = b_1$$

$$\vdots \qquad \qquad \vdots \qquad = \vdots$$

$$a_{m1} \cdot x_1 + \dots + a_{mn} \cdot x_n = b_n$$

Das obere Gleichungssysteme kann folgend in Matrix-Vektor-Form umgeschrieben werden.

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

4.1 Gauss-Algorithmus

Das Ziel des Gauss-Algorithmus ist es Nullen unterhalb der Hauptdiagonale einer Matrix mit einem Koeffizienten-Vektor b zu erzeugen.

Der Gauss-Algorithmus erlaubt das vertauschen von Zeilen und das Multiplikation / Division / Addition / Subtraktion von Zeilen von einander. P wird hier als Pivotelement verwendet. Das Pivotelement ist ein Element aus einer Zeile der Matrix. Links des Pivotelement ist der Gauss-Algorithmus bereits erfüllt und die Elemente unter dem Pivotelement sind die zu modifizierenden Elemente der Matrix. Eine Zeile das von einem Pivotelement besetzt ist/war, wird nicht mehr verändert. Wenn alle Elemente in der Spalte des Pivotelements unterhalb des Pivotelements gleich Null sind, so wird das Pivotelement der Hauptdiagonale nach unten/rechts bewegt. Dies wird wiederholt, bis das Pivotelement das rechte ende der Matrix erreicht hat. Falls ein Pivotelement gleich 0 ist, muss die Zeile so vertauscht werden, dass das neue Pivotelement nicht gleich Null ist.

$$P = \begin{pmatrix} i_P \\ j_P \end{pmatrix}$$

Beispiel einer Matrix / Vektor Kombination auf die der Gauss-Algorithmus angewendet wurde.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

4.2 LGS lösen

Um das LGS mit dem Matrix/Vektor Kombination zu lösen wird rückwärts eingesetzt. Es ist die Matrix / Vektor Kombination gegeben:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Solve for
$$x_3$$
: $0 \cdot x_1 + 0 \cdot x_2 + a_{33} \cdot x_3 = b_3$
Solve for x_2 : $0 \cdot x_1 + a_{22} \cdot x_2 + a_{23} \cdot x_3 = b_2$
Solve for x_1 : $a_{11} \cdot x_1 + a_{12} \cdot x_2 + a_{13} \cdot x_3 = b_1$

4.3 Keine Lösung

Falls eine Zeile der Matrix nur aus Nullen besteht und der b-Vektor nicht gleich Null ist gibt es keine Lösung für das LGS.

$$b_3 \neq 0, *=$$
 any number

$$\begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} * \\ * \\ b_3 \end{bmatrix}$$

4.4 Unendlich viele Lösungen / Parameter

Falls eine Variable Teil des x-Vektors in keine Zeile der Matrix A keine Pivotelement ein einer Spalte besitzt, somit muss diese Variable als Parameter ausgedrückt werden. Bsp.:

$$* = any number$$

$$\begin{bmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{bmatrix} \begin{bmatrix} * \\ * \\ * \end{bmatrix}$$

Somit muss die Variable x_4 als Parameter ausgedrückt werden.

$$x_4 = t \in \mathbb{K}$$

4.5 Lösungsmenge

4.6 Eine Lösung

Wenn das LGS eine Lösung besitzt, kann die Lösung als Vektor geschrien werden. Wobei x_{nL} die Lösungen der Variablen des LGS sind.

$$x = \begin{bmatrix} x_{1L} \\ \vdots \\ x_{nL} \end{bmatrix}$$

4.7 Unendlich viele Lösungen

Wenn das LGS unendlich viele Lösungen besitzt, so kann die Lösung wie folgt geschrieben werden.

* = any number, you know what the fuck you are doing

$$x = \begin{bmatrix} * \\ \vdots \\ * \end{bmatrix} + t \cdot \begin{bmatrix} * \\ \vdots \\ * \end{bmatrix} \cdots, t \in \mathbb{K}, \cdots$$

• 1 Parameter \implies Linie im Raum

• 2 Parameter \implies Fläche im Raum

• 3 Parameter \implies Volumen im Raum

4.8 Kern / homogenes LGS

Ax = 0

 $\ker(A)$ ist die Bezeichnung für die Lösungsmenge eines homogenen LGS.

4.9 Dimension

 $\dim(A)$ ist die Bezeichnung für die Anzahl freien Variablen (Parameter) der Lösung eines homogenen LGS.

4.10 Rang

rang(A) ist die Bezeichnung für die Anzahl der fixen Variablen der Lösung eines homogenen LGS.

5 Seiten im Formelbuch

• Vektoren: S27, S104, S105, S106

• Matrizen: S24, S28, S34

• Komplexe Zahlen: S18, S19

6 Symbole

• \iff : If and only if

 $\bullet \implies : Implies$

